login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248377
Number of compositions of 1 into parts 1/2^k with 0 <= k <= n.
5
1, 2, 6, 56, 5272, 47350056, 3820809588459176, 24878564279781563409541239097464, 1054787931172699885204409659788147413348784265452313995416385160
OFFSET
0,2
COMMENTS
Equivalently, the number of compositions of 2^n into powers of 2.
LINKS
B. Abdul-Baki, Rhythmic Figures
FORMULA
a(n) = A023359(2^n).
lim_{n->oo} a(n+1)/a(n)^2 = 1.704176310706592045608982.... - Bassam Abdul-Baki, Sep 03 2020
EXAMPLE
a(0) = 1: [1].
a(1) = 2: [1/2,1/2], [1].
a(2) = 6: [1/4,1/4,1/4,1/4], [1/2,1/4,1/4], [1/4,1/2,1/4], [1/4,1/4,1/2], [1/2,1/2], [1].
MAPLE
b:= proc(n) option remember; `if`(n=0, 1,
add(b(n-2^j), j=0..ilog2(n)))
end:
a:= n-> b(2^n):
seq(a(n), n=0..10); # Alois P. Heinz, Oct 20 2014
MATHEMATICA
$RecursionLimit = 2000; Clear[b]; b[n_] := b[n] = If[n == 0, 1, Sum[b[n - 2^j], {j, 0, Log[2, n] // Floor}]]; a[n_] := b[2^n]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Oct 30 2014, after Alois P. Heinz *)
CROSSREFS
Cf. A023359.
Row sums of A323840.
Sequence in context: A320287 A365776 A198445 * A326968 A209497 A209738
KEYWORD
nonn
AUTHOR
Bassam Abdul-Baki, Oct 05 2014
STATUS
approved