|
|
A248360
|
|
a(n) = floor( 1/(1 - cos(Pi/n)) ).
|
|
4
|
|
|
0, 1, 2, 3, 5, 7, 10, 13, 16, 20, 24, 29, 34, 39, 45, 52, 58, 65, 73, 81, 89, 98, 107, 116, 126, 137, 147, 159, 170, 182, 194, 207, 220, 234, 248, 262, 277, 292, 308, 324, 340, 357, 374, 392, 410, 428, 447, 467, 486, 506, 527, 548, 569, 591, 613, 635, 658
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
This sequence provides insight into the manner of convergence of the sequence cos(Pi/n).
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
Approximations:
n ... 1-cos(Pi/n) ... 1/(1-cos(Pi/n)
1 ... 2 ............. 0 .5
2 ... 1 ............. 1
3 ... 0.5 ........... 2
4 ... 0.292893 ...... 3.31421
5 ... 0.190983 ...... 5.23607
6 ... 0.133975 ...... 7.4741
|
|
MATHEMATICA
|
z = 800; f[n_] := f[n] = Select[Range[z], Cos[Pi/#] + 1/(#*n) > 1 &, 1];
u = Flatten[Table[f[n], {n, 1, z}]] (* A248359 *)
Table[Floor[1/(1 - Cos[Pi/n])], {n, 1, z/10}] (* A248360 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|