login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1 - 2*x^2)/(1 + x)^5. Fourth column of Riordan triangle A248156.
2

%I #18 Jan 14 2023 12:41:21

%S 1,-5,13,-25,40,-56,70,-78,75,-55,11,65,-182,350,-580,884,-1275,1767,

%T -2375,3115,-4004,5060,-6302,7750,-9425,11349,-13545,16037,-18850,

%U 22010,-25544,29480,-33847,38675,-43995,49839,-56240,63232,-70850,79130,-88109,97825,-108317,119625,-131790

%N Expansion of (1 - 2*x^2)/(1 + x)^5. Fourth column of Riordan triangle A248156.

%C This is the column k=3 sequence of the Riordan triangle A248156 without the leading three zeros.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (-5,-10,-10,-5,-1).

%F O.g.f.: (1 - 2*x^2)/(1 + x)^5 = -2/(1 + x)^3 + 4/(1 + x)^4 - 1/(1 + x)^5.

%F a(n) = (-1)^n*(n+1)*(n+2)*(12 + 9*n - n^2)/4!.

%F a(n) = -5*(a(n-1) + a(n-4)) - 10*(a(n-2) + a(n-3)) - a(n-5), n >= 5, with a(0) =1, a(1) = -5, a(2) = 13, a(3) = -25 and a(4) = 40.

%p A248160:=n->(-1)^n*(n+1)*(n+2)*(12 + 9*n - n^2)/4!: seq(A248160(n), n=0..30); # _Wesley Ivan Hurt_, Oct 09 2014

%t Table[(-1)^n*(n + 1)*(n + 2)*(12 + 9*n - n^2)/4!, {n, 0, 30}] (* _Wesley Ivan Hurt_, Oct 09 2014 *)

%t CoefficientList[Series[(1-2x^2)/(1+x)^5,{x,0,50}],x] (* or *) LinearRecurrence[ {-5,-10,-10,-5,-1},{1,-5,13,-25,40},50] (* _Harvey P. Dale_, Apr 13 2019 *)

%o (PARI) Vec((1 - 2*x^2)/(1 + x)^5 + O(x^50)) \\ _Michel Marcus_, Oct 09 2014

%Y Cf. A248156, A248157 (k=0), A248158 (k=1), A248159 (k=2).

%K sign,easy

%O 0,2

%A _Wolfdieter Lang_, Oct 09 2014