login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248156
Inverse Riordan triangle of A106513: Riordan ((1 - 2*x^2 )/(1 + x), x/(1+x)).
6
1, -2, 1, 1, -3, 1, 0, 4, -4, 1, -1, -4, 8, -5, 1, 2, 3, -12, 13, -6, 1, -3, -1, 15, -25, 19, -7, 1, 4, -2, -16, 40, -44, 26, -8, 1, -5, 6, 14, -56, 84, -70, 34, -9, 1, 6, -11, -8, 70, -140, 154, -104, 43, -10, 1, -7, 17, -3, -78, 210, -294, 258, -147, 53, -11, 1, 8, -24, 20, 75, -288, 504, -552, 405, -200, 64, -12, 1
OFFSET
0,2
COMMENTS
Columns k=0..3 give A248157, A248158, A248159, A248160.
Row sums have o.g.f. (1 - 2*x)/(1 + x): [1, -1, repeat(-1, 1)].
Alternating row sums are (-1)^n*A083318(n).
FORMULA
O.g.f. row polynomials R(n,x) = sum(T(n,k)*x^k, k=0..n): (1 - 2*z)/((1 + z)*(1 + (1-x)*z)).
O.g.f. column m: x^m*(1 - 2*x^2)/(1 + x)^(m+2), m >= 0.
The A-sequence is [1, -1], implying the recurrence T(n,k) = T(n-1,k-1) - T(n-1,k), n >= k > = 1. The Z-sequence is -[2, 3, 7, 17, 41, 99, 239, 577, 1393, ...] = A248161, implying the recurrence T(n,0) = sum(T(n-1,k)*Z(k),k=0..n-1). See the W. Lang link under A006232 for Riordan A- and Z-sequences.
The standard recurrence for the sequence for column k=0 is T(0,0) = 1 and T(n,0) = -2*T(n-1,0) - T(n-2,0), n >= 3, with T(1,0) = -2 and T(2,0) = 1.
EXAMPLE
The triangle T(n,k) begins:
n\k 0 1 2 3 4 5 6 7 8 9
0: 1
1: -2 1
2: 1 -3 1
3: 0 4 -4 1
4: -1 -4 8 -5 1
5: 2 3 -12 13 -6 1
6: -3 -1 15 -25 19 -7 1
7: 4 -2 -16 40 -44 26 -8 1
8: -5 6 14 -56 84 -70 34 -9 1
9: 6 -11 -8 70 -140 154 -104 43 -10 1
...
For more rows see the link.
Recurrence from A-sequence: -12 = T(5,2) = T(4,1) - T(4,2) = -4 - 8.
Recurrence from the Z-sequence: 2 = T(5,0) = -(2*(-1) + 3*(-4) + 7*8 + 17*(-5) + 41*1) = 2.
Standard recurrence for T(n,0): 0 = T(3,0) = -2*T(2,0) - T(1,0) = -2*1 -(-2).
MATHEMATICA
T[n_, k_] := SeriesCoefficient[x^k*(1 - 2*x^2)/(1 + x)^(k + 2), {x, 0, n}]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 09 2014 *)
KEYWORD
sign,easy,tabl
AUTHOR
Wolfdieter Lang, Oct 05 2014
STATUS
approved