login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248101
Completely multiplicative with a(prime(n)) = prime(n)^((n+1) mod 2).
7
1, 1, 3, 1, 1, 3, 7, 1, 9, 1, 1, 3, 13, 7, 3, 1, 1, 9, 19, 1, 21, 1, 1, 3, 1, 13, 27, 7, 29, 3, 1, 1, 3, 1, 7, 9, 37, 19, 39, 1, 1, 21, 43, 1, 9, 1, 1, 3, 49, 1, 3, 13, 53, 27, 1, 7, 57, 29, 1, 3, 61, 1, 63, 1, 13, 3, 1, 1, 3, 7, 71, 9, 1, 37, 3, 19, 7, 39, 79
OFFSET
1,3
COMMENTS
To compute a(n) replace odd-indexed primes in the prime factorization of n by 1.
a(p) = p if p is in A031215.
a(p) = 1 if p is in A031368.
FORMULA
When n = Product_{k>=1} prime(k)^r_k, a(n) = Product_{k>=1} prime(k)^(r_k*((k+1) mod 2)).
a(n) = n / A247503(n).
a(n) = Product(A027746(n,k): k = 1 .. A001222(n) and A049084(A027746(n,k)) is even). - Reinhard Zumkeller, Mar 06 2015
EXAMPLE
Since 10 = 2*5, 2 = prime(1), and 5 = prime(3), a(10) = 1*1 = 1.
Since 9 = 3^2 and 3 is an even-indexed prime, 3 = prime(2), then a(9) = 3^2 = 9.
Since 35 = 5*7, 5 = prime(3), and 7 = prime(4), we see that a(35) = 1*7 = 7.
MATHEMATICA
f[n_] := Block[{a, g, pf = FactorInteger@ n}, a = PrimePi[First /@ pf]; g[x_] := If[Or[OddQ@ x, x == 0], 1, Prime@ x]; Times @@ Power @@@ Transpose@ {g /@ a, Last /@ pf}]; Array[f, 120] (* Michael De Vlieger, Mar 03 2015 *)
Array[Times @@ (FactorInteger[#] /. {p_, e_} /; e > 0 :> (p^Mod[PrimePi@ p + 1, 2])^e) &, 79] (* Michael De Vlieger, Apr 05 2017 *)
PROG
(Sage)
n=100; evenIndexPrimes=[primes_first_n(2*n+2)[2*i+1] for i in [0..n]]
[prod([(x[0]^(x[0] in evenIndexPrimes))^x[1] for x in factor(n)]) for n in [1..n]]
(PARI) a(n) = {f = factor(n); for (i=1, #f~, f[i, 2] *= (primepi(f[i, 1])+1) % 2; ); factorback(f); } \\ Michel Marcus, Mar 03 2015
(Haskell)
a248101 = product . filter (even . a049084) . a027746_row
-- Reinhard Zumkeller, Mar 06 2015
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Tom Edgar, Mar 03 2015
STATUS
approved