This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A247988 Least number k such that e - k/(k!)^(1/k) < 1/n. 1
 4, 11, 19, 27, 36, 45, 54, 64, 74, 84, 94, 105, 115, 126, 136, 147, 158, 169, 180, 191, 203, 214, 225, 237, 248, 260, 272, 283, 295, 307, 319, 331, 343, 355, 367, 379, 391, 403, 416, 428, 440, 452, 465, 477, 490, 502, 515, 527, 540, 552, 565, 578, 590, 603 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 14. LINKS EXAMPLE Let w(n) = e - n/(n!)^(1/n).  Approximations are shown here: n .... w(n)  ...... 1/n 1 .... 1.71828 .... 1 2 .... 1.30407 .... 0.5 3 .... 1.06732 .... 0.333333 4 .... 0.911078 ... 0.25 5 .... 0.799022 ... 0.2 10 ... 0.510157 ... 0.1 11 ... 0.477609 ... 0.090909 a(2) = 11 because w(11) < 1/2 < w(10). MATHEMATICA \$MaxExtraPrecision = Infinity; z = 1000; p[k_] := p[k] = k/(k!)^(1/k) (* Finch p. 14 *) N[Table[E - p[n], {n, 1, z}]]; f[n_] := f[n] = Select[Range[z], E - p[#] < 1/n &, 1]; u = Flatten[Table[f[n], {n, 1, z/10}]]  (* A247988 *) CROSSREFS Cf. A247778, A247908, A247911, A247914, A247985. Sequence in context: A304499 A278709 A063215 * A162996 A037262 A101418 Adjacent sequences:  A247985 A247986 A247987 * A247989 A247990 A247991 KEYWORD nonn,easy AUTHOR Clark Kimberling, Sep 29 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 05:15 EST 2018. Contains 318052 sequences. (Running on oeis4.)