Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Sep 08 2022 08:46:09
%S 3896,4027,6583,8751,12067,12131,19187,19651,20276,20568,21224,22711,
%T 23428,24340,24904,25447,26139,26760,27355,27991,28031,28759,31639,
%U 31999,32968,34088,34507,35367,36276,36807,37219,37540,39819,40299,40692,41015,41063,41583,41671,42423,43192
%N Absolute discriminants of complex quadratic fields with 3-class group of type (3,3) whose second 3-class group is located on the sporadic part of the coclass graph G(3,2) outside of coclass trees.
%C These fields are characterized either by their 3-principalization types (transfer kernel types, TKTs) (2143), G.19, (2241), D.10, (4224), D.5, (4443), H.4, or equivalently by their transfer target types (TTTs) [(3,9)^4], [(3,3,3), (3,9)^3], [(3,3,3)^2, (3,9)^2], [(3,3,3)^3, (3,9)] (called IPADs by Boston, Bush, Hajir). The latter are used in the MAGMA PROG, which essentially constitutes the principalization algorithm via class group structure.
%H N. Boston, M. R. Bush, F. Hajir, <a href="http://arxiv.org/abs/1111.4679">Heuristics for p-class towers of imaginary quadratic fields</a>, arXiv:1111.4679 [math.NT], 2011, Math. Ann. (2013).
%H D. C. Mayer, <a href="https://arxiv.org/abs/1403.3899">The second p-class group of a number field</a>, arXiv:1403.3899 [math.NT], 2014; Int. J. Number Theory 8 (2012), no. 2, 471-505.
%H D. C. Mayer, <a href="https://arxiv.org/abs/1403.3896">Transfers of metabelian p-groups</a>, arXiv:1403.3896 [math.GR], 2014; Monatsh. Math. 166 (3-4) (2012), 467-495.
%H D. C. Mayer, <a href="https://arxiv.org/abs/1403.3833">The distribution of second p-class groups on coclass graphs</a>, arXiv:1403.3833 [math.NT], 2014; J. Théor. Nombres Bordeaux 25 (2) (2013), 401-456.
%H D. C. Mayer, <a href="http://arxiv.org/abs/1403.3839">Principalization algorithm via class group structure</a>, J. Théor. Nombres Bordeaux (2014), Preprint: arXiv:1403.3839v1 [math.NT], 2014.
%o (Magma)
%o for d := 2 to 10^5 do a := false; if (3 eq d mod 4) and IsSquarefree(d) then a := true; end if; if (0 eq d mod 4) then r := d div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (1 eq r mod 4)) then a := true; end if; end if; if (true eq a) then K := QuadraticField(-d); C, mC := ClassGroup(K); if ([3, 3] eq pPrimaryInvariants(C, 3)) then E := AbelianExtension(mC); sS := Subgroups(C: Quot := [3]); sA := [AbelianExtension(Inverse(mQ)*mC) where Q, mQ := quo<C|x`subgroup>: x in sS]; sN := [NumberField(x): x in sA]; sF := [AbsoluteField(x): x in sN]; sM := [MaximalOrder(x): x in sF]; sM := [OptimizedRepresentation(x): x in sF]; sA := [NumberField(DefiningPolynomial(x)): x in sM]; sO := [Simplify(LLL(MaximalOrder(x))): x in sA]; delete sA, sN, sF, sM; g := true; for j in [1..#sO] do CO := ClassGroup(sO[j]); if not (3 eq Valuation(#CO, 3)) then g := false; end if; end for; if (true eq g) then d, ", "; end if; end if; end if; end for;
%Y Cf. A242862, A242863 (supersequences), A242864, A242873, A247688 (subsequences), and A242878 (disjoint sequence).
%K hard,nonn
%O 1,1
%A _Daniel Constantin Mayer_, Sep 27 2014