login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247595
a(n) = 4*a(n-1) - 4*a(n-2) + 4*a(n-3) with a(0) = 1, a(1) = 3, a(2) = 10.
1
1, 3, 10, 32, 100, 312, 976, 3056, 9568, 29952, 93760, 293504, 918784, 2876160, 9003520, 28184576, 88228864, 276191232, 864587776, 2706501632, 8472420352, 26522025984, 83024429056, 259899293696, 813587562496, 2546850791424, 7972650090496, 24957547446272
OFFSET
0,2
FORMULA
G.f.: (1 - x + 2*x^2) / (1 - 4*x + 4*x^2 - 4*x^3).
0 = a(n) - 4*a(n-1) + 4*a(n-2) - 4*a(n-3) for all n in Z.
a(n) = A061279(2*n) for all n in Z.
Binomial transform of A247594.
EXAMPLE
G.f. = 1 + 3*x + 10*x^2 + 32*x^3 + 100*x^4 + 312*x^5 + 976*x^6 + 3056*x^7 + ...
MATHEMATICA
CoefficientList[Series[(1-x+2*x^2)/(1-4*x+4*x^2-4*x^3), {x, 0, 60}], x] (* G. C. Greubel, Aug 04 2018 *)
PROG
(PARI) {a(n) = if( n<0, polcoeff( (2*x - x^2 + x^3) / (4 - 4*x + 4*x^2 - x^3) + x * O(x^-n), -n), polcoeff( (1 - x + 2*x^2) / (1 - 4*x + 4*x^2 - 4*x^3) + x * O(x^n), n))};
(Haskell)
a247595 n = a247595_list !! n
a247595_list = 1 : 3 : 10 : map (* 4) (zipWith3 (((+) .) . (-))
(drop 2 a247595_list) (tail a247595_list) a247595_list)
-- Reinhard Zumkeller, Sep 21 2014
(Magma) m:=60; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1 - x +2*x^2)/(1-4*x+4*x^2-4*x^3))); // G. C. Greubel, Aug 04 2018
CROSSREFS
Sequence in context: A038731 A244762 A053581 * A092822 A017935 A134377
KEYWORD
nonn
AUTHOR
Michael Somos, Sep 20 2014
STATUS
approved