|
|
A061279
|
|
a(n) = Sum_{k >= 0} 2^k * binomial(k+2,n-2*k).
|
|
6
|
|
|
1, 2, 3, 6, 10, 18, 32, 56, 100, 176, 312, 552, 976, 1728, 3056, 5408, 9568, 16928, 29952, 52992, 93760, 165888, 293504, 519296, 918784, 1625600, 2876160, 5088768, 9003520, 15929856, 28184576, 49866752, 88228864, 156102656
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
a(n) counts (binary) bit strings of length n in which no odd length block of 0's is followed by an odd length block of 1's. - Len Smiley, Nov 23 2001
|
|
REFERENCES
|
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(2.4.6).
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (1+x)^2/(1-2*x^2-2*x^3).
a(n) = 2*a(n-2) + 2*a(n-3) for n>=3 with a(0)=1, a(1)=2, a(2)=3. - Wesley Ivan Hurt, Jan 01 2024
|
|
EXAMPLE
|
a(3) = 6 because only 2 of the 8 binary words of length 3 are such that an odd maximal block of 1's follows an odd maximal block of 0's: 010 and 101. - Geoffrey Critzer, May 28 2017
|
|
MATHEMATICA
|
nn = 30; a[x] := 1/(1 - x); c[x_] := x/(1 - x^2); CoefficientList[Series[a[x]^2/(1 - (x^2 a[x]^2 - c[x]^2)) , {x, 0, nn}], x] (*Geoffrey Critzer, May 28 2017*)
LinearRecurrence[{0, 2, 2}, {1, 2, 3}, 40] (* Harvey P. Dale, May 05 2023 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|