

A061276


Numbers that are sums of repdigits of their digits (see Comments for precise definition).


2



0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 197, 198, 199, 285, 373, 461, 554, 1098, 1099, 1185, 1186, 1187, 1276, 1278, 1365, 1366, 1453, 1454, 1458, 1459, 1543, 2176, 2261, 2263, 2354, 2357, 2359, 2532, 2621, 2623, 2996, 2997, 2999, 3254, 3259, 3340, 3341, 3342, 3343
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

If d is 1, 2, 3, ..., or 9, let S(d) denote a decimal number of the form ddd...d, with at least one d, and let S(0) = 0.
The sequence consists of numbers k with the following property. If the decimal expansion of k is ijk..., then k can also be written as S(i)+S(j)+S(k)+...
For example, 199 is a term, because 99 = 1 + 99 + 99, which has the form S(1)+S(9)+S(9).
For further examples see the Seidov link.


LINKS



EXAMPLE

1185 = 1111 + 11 + 8 + 55.


MATHEMATICA

okQ[n_] := Module[{d, len, ones, lst}, d = IntegerDigits[n]; len = Length[d]; ones = Table[(10^i  1)/9, {i, len}]; lst = d[[1]]*ones; Do[lst = Union[Flatten[Outer[Plus, lst, d[[i]]*ones]]], {i, 2, len}]; MemberQ[lst, n]]; Select[Range[0, 4000], okQ] (* T. D. Noe, Dec 09 2011 *)


CROSSREFS



KEYWORD

base,easy,nice,nonn


AUTHOR



EXTENSIONS



STATUS

approved



