The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A247560 a(n) = 3*a(n-1) - 4*a(n-2) with a(0) = a(1) = 1. 4
 1, 1, -1, -7, -17, -23, -1, 89, 271, 457, 287, -967, -4049, -8279, -8641, 7193, 56143, 139657, 194399, 24569, -703889, -2209943, -3814273, -2603047, 7447951, 32756041, 68476319, 74404793, -50690897, -449691863, -1146312001, -1640168551, -335257649, 5554901257 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..1000 F. Beukers, The multiplicity of binary recurrences, Compositio Mathematica, Tome 40 (1980) no. 2, pp. 251-267. See Theorem 2, p. 259. M. Mignotte, Propriétés arithmétiques des suites récurrentes, Besançon, 1988-1989, see p. 14. In French. Index entries for linear recurrences with constant coefficients, signature (3,-4). FORMULA G.f.: (1 - 2*x) / (1 - 3*x + 4*x^2). a(n) = 3*a(n-1) - 4*a(n-2) for all n in Z. a(n) = a(-1-n) * 2^(2*n + 1)  for all n in Z. a(n) = (-1)^n * A087168(n) for all n in Z. A247565(n) = 2^n + a(n) for all n in Z. a(n) = A247487(2*n + 1) = A247564(2*n + 1) for all n in Z. a(n) = (1/14)*i*sqrt(7)*((3/2 + (1/2)*i*sqrt(7))^n - (3/2 - (1/2)*i*sqrt(7))^n) + (1/2)*((3/2 + (1/2)*i*sqrt(7))^n + (3/2 - (1/2)*i*sqrt(7))^n). - Paolo P. Lava, Oct 02 2014 EXAMPLE G.f. = 1 + x - x^2 - 7*x^3 - 17*x^4 - 23*x^5 - x^6 + 89*x^7 + 271*x^8 + ... MAPLE A247560:=n->simplify((1/14*I)*sqrt(7)*((3/2+(1/2*I)*sqrt(7))^n-(3/2-(1/2*I)*sqrt(7))^n)+1/2*((3/2+(1/2*I)*sqrt(7))^n+(3/2-(1/2*I)*sqrt(7))^n)): seq(A247560(n), n=0..40); # Wesley Ivan Hurt, Oct 02 2014 MATHEMATICA a[ n_] := Re[ (1 - 1/Sqrt[-7]) (3 + Sqrt[-7])^n / 2^n]; LinearRecurrence[{3, -4}, {1, 1}, 40] (* Harvey P. Dale, Jun 13 2017 *) PROG (PARI) {a(n) = real( (1 + quadgen(-7))^n )}; (Haskell) a247560 n = a247560_list !! n a247560_list = 1 : 1 : zipWith (-) (map (* 3) \$ tail a247560_list)                                    (map (* 4) a247560_list) -- Reinhard Zumkeller, Sep 20 2014 (Sage) [((1-1/sqrt(-7))*(3+sqrt(-7))^n/2^n).real() for n in range(34)] # Peter Luschny, Oct 02 2014 (after Somos) (MAGMA) I:=[1, 1]; [n le 2 select I[n] else 3*Self(n-1) - 4*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 04 2018 CROSSREFS Cf. A087168, A247487, A247564, A247565. Sequence in context: A125244 A070416 A087168 * A215824 A239210 A191087 Adjacent sequences:  A247557 A247558 A247559 * A247561 A247562 A247563 KEYWORD sign,easy AUTHOR Michael Somos, Sep 19 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 03:42 EDT 2021. Contains 347478 sequences. (Running on oeis4.)