The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A247544 Numbers k such that d(r,k) = 1 and d(s,k) = 0, where d(x,k) = k-th binary digit of x, r = {e}, s = {1/e}, and { } = fractional part. 4
 1, 3, 8, 9, 10, 24, 27, 31, 37, 42, 48, 51, 58, 59, 70, 72, 75, 80, 84, 85, 101, 102, 105, 107, 119, 121, 122, 127, 131, 138, 139, 142, 143, 144, 148, 151, 158, 160, 165, 169, 172, 177, 181, 186, 190, 193, 198, 199, 200, 201, 210, 222, 226, 228, 233, 236 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Every positive integer lies in exactly one of these: A247542, A247543, A247544, A247545. LINKS Clark Kimberling, Table of n, a(n) for n = 1..1000 EXAMPLE {e/1} has binary digits 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, ... {1/e} has binary digits 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, ... so that a(1) = 2 and a(2) = 5. MATHEMATICA z = 400; r = FractionalPart[E]; s = FractionalPart[1/E]; u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]] v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]] t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}]; t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}]; t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}]; t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}]; Flatten[Position[t1, 1]]  (* A247542 *) Flatten[Position[t2, 1]]  (* A247543 *) Flatten[Position[t3, 1]]  (* A247544 *) Flatten[Position[t4, 1]]  (* A247545 *) CROSSREFS Cf. A247542, A247543, A247545. Sequence in context: A051208 A211223 A350776 * A080524 A024550 A173179 Adjacent sequences:  A247541 A247542 A247543 * A247545 A247546 A247547 KEYWORD nonn,easy,base AUTHOR Clark Kimberling, Sep 21 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 28 15:20 EST 2022. Contains 350657 sequences. (Running on oeis4.)