The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A247382 a(n) = (a(n-1) * a(n-3) - (-1)^n * a(n-2)^2) / a(n-4) with a(0) = -3, a(1) = 7, a(2) = 1, a(3) = 46. 2
 -3, 7, 1, 46, -107, 287, 1753, -2287, 34854, 231113, -994499, -8198929, -82742507, 646912018, 12217516729, 72254901151, 1239086834889, 31471566933049, 60457357235782, 14744625259648249, 371548914696565093, 7621699930737956423, -424588302658797056471 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..150 FORMULA 0 = a(n) * a(n+4) - a(n+1) * a(n+3) + (-1)^n * a(n+2)^2 for all n in Z. 0 = a(n) * a(n+9) + a(n+1) * a(n+8) + 9 * a(n+3) * a(n+6) + 9 * a(n+4) * a(n+5) for all n in Z. a(-n) = A247378(n) for all n in Z. MATHEMATICA RecurrenceTable[{a[0]==-3, a[1]==7, a[2]==1, a[3]==46, a[n]==(a[n-1]a[n-3]- (-1)^n a[n-2]^2)/a[n-4]}, a, {n, 30}] (* Harvey P. Dale, Aug 22 2016 *) PROG (PARI) {a(n) = if( n<-4, (a(n+1) * a(n+3) - (-1)^n * a(n+2)^2) / a(n+4), if( n<0, [1, -2, 1, 1][-n], (a(n-1) * a(n-3) - (-1)^n * a(n-2)^2) / a(n-4)))}; (PARI) {a(n) = my(A); n=-n; A = if( n<1, n = 6-n; [-1, 1, 1, -2], [1, -2, 1, 1]); A = concat(A, vector(max(0, n-4))); for(k=5, n, A[k] = (A[k-1] * A[k-3] - (-1)^k * A[k-2]^2) / A[k-4]); A[n]}; (Haskell) a247382 n = a247382_list !! n a247382_list = [-3, 7, 1, 46] ++ zipWith (flip div) a247382_list (zipWith (+) (zipWith (*) (tail a247382_list) (drop 3 a247382_list)) (zipWith (*) (cycle [-1, 1]) (map (^ 2) \$ drop 2 a247382_list))) -- Reinhard Zumkeller, Sep 17 2014 (Magma) I:=[-3, 7, 1, 46]; [n le 4 select I[n] else ( Self(n-1)*Self(n-3) + (-1)^n*Self(n-2)^2 )/Self(n-4): n in [1..30]]; // G. C. Greubel, Aug 05 2018 (GAP) a:=[-3, 7, 1, 46];; for n in [5..25] do a[n]:=(a[n-1]*a[n-3]-(-1)^(n-1)*a[n-2]^2)/a[n-4]; od; a; # Muniru A Asiru, Aug 05 2018 CROSSREFS Cf. A247378. Sequence in context: A110238 A077505 A309376 * A031436 A144556 A001439 Adjacent sequences: A247379 A247380 A247381 * A247383 A247384 A247385 KEYWORD sign AUTHOR Michael Somos, Sep 15 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 04:17 EST 2023. Contains 367506 sequences. (Running on oeis4.)