login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A247382 a(n) = (a(n-1) * a(n-3) - (-1)^n * a(n-2)^2) / a(n-4) with a(0) = -3, a(1) = 7, a(2) = 1, a(3) = 46. 2
-3, 7, 1, 46, -107, 287, 1753, -2287, 34854, 231113, -994499, -8198929, -82742507, 646912018, 12217516729, 72254901151, 1239086834889, 31471566933049, 60457357235782, 14744625259648249, 371548914696565093, 7621699930737956423, -424588302658797056471 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
LINKS
FORMULA
0 = a(n) * a(n+4) - a(n+1) * a(n+3) + (-1)^n * a(n+2)^2 for all n in Z.
0 = a(n) * a(n+9) + a(n+1) * a(n+8) + 9 * a(n+3) * a(n+6) + 9 * a(n+4) * a(n+5) for all n in Z.
a(-n) = A247378(n) for all n in Z.
MATHEMATICA
RecurrenceTable[{a[0]==-3, a[1]==7, a[2]==1, a[3]==46, a[n]==(a[n-1]a[n-3]- (-1)^n a[n-2]^2)/a[n-4]}, a, {n, 30}] (* Harvey P. Dale, Aug 22 2016 *)
PROG
(PARI) {a(n) = if( n<-4, (a(n+1) * a(n+3) - (-1)^n * a(n+2)^2) / a(n+4), if( n<0, [1, -2, 1, 1][-n], (a(n-1) * a(n-3) - (-1)^n * a(n-2)^2) / a(n-4)))};
(PARI) {a(n) = my(A); n=-n; A = if( n<1, n = 6-n; [-1, 1, 1, -2], [1, -2, 1, 1]); A = concat(A, vector(max(0, n-4))); for(k=5, n, A[k] = (A[k-1] * A[k-3] - (-1)^k * A[k-2]^2) / A[k-4]); A[n]};
(Haskell)
a247382 n = a247382_list !! n
a247382_list = [-3, 7, 1, 46] ++ zipWith (flip div) a247382_list
(zipWith (+)
(zipWith (*) (tail a247382_list) (drop 3 a247382_list))
(zipWith (*) (cycle [-1, 1]) (map (^ 2) $ drop 2 a247382_list)))
-- Reinhard Zumkeller, Sep 17 2014
(Magma) I:=[-3, 7, 1, 46]; [n le 4 select I[n] else ( Self(n-1)*Self(n-3) + (-1)^n*Self(n-2)^2 )/Self(n-4): n in [1..30]]; // G. C. Greubel, Aug 05 2018
(GAP) a:=[-3, 7, 1, 46];; for n in [5..25] do a[n]:=(a[n-1]*a[n-3]-(-1)^(n-1)*a[n-2]^2)/a[n-4]; od; a; # Muniru A Asiru, Aug 05 2018
CROSSREFS
Cf. A247378.
Sequence in context: A110238 A077505 A309376 * A031436 A144556 A001439
KEYWORD
sign
AUTHOR
Michael Somos, Sep 15 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 04:17 EST 2023. Contains 367506 sequences. (Running on oeis4.)