|
|
A247378
|
|
a(n) = (a(n-1) * a(n-3) - (-1)^n * a(n-2)^2) / a(n-4) with a(1) = a(3) = a(4) = 1, a(2) = -2.
|
|
2
|
|
|
1, -2, 1, 1, -1, 1, 2, -3, -1, -11, 17, 46, 217, -143, 2383, 10797, 19054, 497689, 2407303, -18692747, -184111831, -1592624618, 26447728169, 396185367129, -372098609569, 104735294255689, 1574163501502418, -29166210748027547, 1549967994300724111
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
0 = a(n) * a(n+4) - a(n+1) * a(n+3) + (-1)^n * a(n+2)^2 for all n in Z.
0 = a(n) * a(n+9) + a(n+1) * a(n+8) + 9 * a(n+3) * a(n+6) + 9 * a(n+4) * a(n+5) for all n in Z.
|
|
MATHEMATICA
|
RecurrenceTable[{a[0]==1, a[1]==-2, a[2]==1, a[3]==1, a[n]==(a[n-1]a[n-3] - (-1)^n a[n-2]^2)/a[n-4]}, a, {n, 30}] (* G. C. Greubel, Aug 05 2018 *)
|
|
PROG
|
(PARI) {a(n) = if( n<1, (a(n+1) * a(n+3) - (-1)^n * a(n+2)^2) / a(n+4), if( n<5, [1, -2, 1, 1][n], (a(n-1) * a(n-3) - (-1)^n * a(n-2)^2) / a(n-4)))};
(PARI) {a(n) = my(A); A = if( n<1, n = 6-n; [-1, 1, 1, -2], [1, -2, 1, 1]); A = concat(A, vector(max(0, n-4))); for(k=5, n, A[k] = (A[k-1] * A[k-3] - (-1)^k * A[k-2]^2) / A[k-4]); A[n]};
(Magma) I:=[1, -2, 1, 1]; [n le 4 select I[n] else (Self(n-1)*Self(n-3)-(-1)^n*Self(n-2)^2)/Self(n-4): n in [1..30]]; // Vincenzo Librandi, Sep 16 2014
(Haskell)
a247378 n = a247378_list !! (n-1)
a247378_list = [1, -2, 1, 1] ++ zipWith (flip div) a247378_list
(zipWith (+)
(zipWith (*) (tail a247378_list) (drop 3 a247378_list))
(zipWith (*) (cycle [1, -1]) (map (^ 2) $ drop 2 a247378_list)))
(Magma) I:=[1, -2, 1, 1]; [n le 4 select I[n] else ( Self(n-1)*Self(n-3) - (-1)^n*Self(n-2)^2 )/Self(n-4): n in [1..30]]; // G. C. Greubel, Aug 05 2018
(GAP) a:=[1, -2, 1, 1];; for n in [5..30] do a[n]:=(a[n-1]*a[n-3]-(-1)^n*a[n-2]^2)/a[n-4]; od; a; # Muniru A Asiru, Aug 05 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|