login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247369
a(n) = (a(n-1) * a(n-3) + (-1)^n * a(n-2)^2) / a(n-4), with a(0) = 0, a(1) = -1, a(2) = a(3) = a(4) = 1, a(9) = 3.
1
0, -1, 1, 1, 1, 0, 1, 1, 1, 3, 4, -5, 1, -7, 9, 8, 25, -23, 49, 87, 16, 295, 529, -903, 841, -1256, 3481, -1495, 16641, -44341, 98596, 217651, 4225, 1058961, 2337841, -5106896, 13608721, 5415345, 67387681, -173830481, 264517696, -2288275633, 6941055969
OFFSET
0,10
LINKS
FORMULA
0 = a(n)*a(n+9) + a(n+1)*a(n+8) + a(n+3)*a(n+6) + a(n+4)*a(n+5) for all n in Z.
a(n) = a(-n), a(2*n) = A006769(n)^2 for all n in Z.
MATHEMATICA
Join[{0, -1, 1, 1, 1, 0, 1, 1, 1}, RecurrenceTable[{a[9]==3, a[10]==4, a[11]==-5, a[12]==1, a[n]==(a[n-1]a[n-3] + (-1)^n a[n-2]^2)/a[n-4]}, a, {n, 9, 30}]] (* G. C. Greubel, Aug 05 2018 *)
PROG
(PARI) {a(n) = my(A = [-1, 1, 1, 1]); n=abs(n); if( n==0, 0, if( n<5, A[n], A = concat(A, vector(n-4)); for(k=5, n, A[k] = if( k==9, 3, (A[k-1] * A[k-3] + (-1)^k * A[k-2]^2) / A[k-4])); A[n]))};
(Haskell)
a247369 n = a247369_list !! n
a247369_list = [0, -1, 1, 1, 1, 0] ++ xs where
xs = [1, 1, 1, 3] ++ zipWith (flip div) xs (zipWith (+)
(zipWith (*) (tail xs) (drop 3 xs))
(zipWith (*) (cycle [1, -1]) (map (^ 2) $ drop 2 xs)))
-- Reinhard Zumkeller, Sep 15 2014
(Magma) I:=[3, 4, -5, 1]; [0, -1, 1, 1, 1, 0, 1, 1, 1] cat [n le 4 select I[n] else ( Self(n-1)*Self(n-3) + (-1)^n*Self(n-2)^2 )/Self(n-4): n in [1..30]]; // G. C. Greubel, Aug 05 2018
CROSSREFS
Cf. A006769.
Sequence in context: A370116 A345708 A144786 * A009389 A091828 A305972
KEYWORD
sign
AUTHOR
Michael Somos, Sep 14 2014
STATUS
approved