login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Rectangular array read upwards by columns: T = T(n,k) = number of paths from (0,0) to (n,k), where 0 <= k <= 3, consisting of segments given by the vectors (1,1), (1,2), (1,-1).
7

%I #13 Sep 16 2014 02:35:17

%S 1,0,0,0,0,1,1,0,1,1,1,2,1,2,4,2,2,5,5,6,5,7,13,10,7,18,22,20,18,29,

%T 45,40,29,63,87,74,63,116,166,150,116,229,329,282,229,445,627,558,445,

%U 856,1232,1072,856,1677,2373,2088,1677,3229,4621,4050,3229

%N Rectangular array read upwards by columns: T = T(n,k) = number of paths from (0,0) to (n,k), where 0 <= k <= 3, consisting of segments given by the vectors (1,1), (1,2), (1,-1).

%C Also, T(n,k) = number of strings s(0)..s(n) of integers such that s(0) = 0, s(n) = k, and for i > 0, s(i) is in {0,1,2,3} and s(i) - s(i-1) is in {-1,1,2} for 1 <= i <= n.

%H Clark Kimberling, <a href="/A247321/b247321.txt">Table of n, a(n) for n = 0..1000</a>

%F The four rows and the column sums all empirically satisfy the linear recurrence r(n) = 3*r(n-2) + 2*r(n-3) - r(n-4), with g.f. of the form p(x)/q(x), where q(x) = 1 - 3 x^2 - 2 x^3 + x^4. Initial terms and p(x) follow:

%F (row 0, the bottom row): 1,0,1,1; 1 - 2*x^2 - x^3

%F (row 1): 0,1,1,2; x + x^2 - x^3

%F (row 2): 0,1,1,4; x + x^2 + x^3

%F (row 3): 0,0,1,1; 2x^2 + 2x^3

%F (n-th column sum) = 1,2,5,9; 1 + 2*x + 2*x^2 + x^3.

%e First 10 columns:

%e 0 .. 0 .. 2 .. 2 .. 6 .. 10 .. 20 .. 40 .. 74 .. 150

%e 0 .. 1 .. 1 .. 4 .. 5 .. 13 .. 22 .. 45 .. 87 .. 166

%e 0 .. 1 .. 1 .. 2 .. 5 .. 7 ... 18 .. 29 .. 63 .. 116

%e 1 .. 0 .. 1 .. 1 .. 2 .. 5 ... 7 ... 18 .. 29 .. 63

%e T(3,2) counts these 4 paths, given as vector sums applied to (0,0):

%e (1,2) + (1,1) + (1, -1)

%e (1,1) + (1,2) + (1,-1)

%e (1,2) + (1,-1) + (1,1)

%e (1,1) + (1,-1) + (1,2)

%e Partial sums of second components in each vector sum give the 3 integer strings described in Comments: (0,2,3,2), (0,1,3,2), (0,2,1,2), (0,1,0,2).

%t z = 25; t[0, 0] = 1; t[0, 1] = 0; t[0, 2] = 0; t[0, 3] = 0;

%t t[1, 3] = 0; t[n_, 0] := t[n, 0] = t[n - 1, 1];

%t t[n_, 1] := t[n, 1] = t[n - 1, 0] + t[n - 1, 2];

%t t[n_, 2] := t[n, 2] = t[n - 1, 0] + t[n - 1, 1] + t[n - 1, 3];

%t t[n_, 3] := t[n, 3] = t[n - 1, 1] + t[n - 1, 2];

%t u = Flatten[Table[t[n, k], {n, 0, z}, {k, 0, 3}]] (* A247321 *)

%t TableForm[Reverse[Transpose[Table[t[n, k], {n, 0, 12}, {k, 0, 3}]]]]

%t u1 = Table[t[n, k], {n, 0, z}, {k, 0, 3}];

%t v = Map[Total, u1] (* A247322 column sums *)

%t Table[t[n, 0], {n, 0, z}] (* A247323, row 0 *)

%t Table[t[n, 1], {n, 0, z}] (* A247323 shifted, row 1 *)

%t Table[t[n, 2], {n, 0, z}] (* A247325, row 2 *)

%t Table[t[n, 3], {n, 0, z}] (* A247326, row 3 *)

%Y Cf. A247049, A247322, A247323, A247325, A247326.

%K nonn,tabf,easy

%O 0,12

%A _Clark Kimberling_, Sep 13 2014