login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247301
Rectangular array read upwards by columns: T = T(n,k) = number of paths from (0,0) to (n,k), where 0 >= k <= 2, consisting of segments given by the vectors (1,1), (2,1), (1,-1).
2
1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 2, 2, 2, 4, 3, 4, 6, 6, 6, 12, 10, 12, 20, 18, 20, 36, 32, 36, 64, 56, 64, 112, 100, 112, 200, 176, 200, 352, 312, 352, 624, 552, 624, 1104, 976, 1104, 1952, 1728, 1952, 3456, 3056, 3456, 6112, 5408, 6112, 10816, 9568, 10816
OFFSET
0,11
LINKS
FORMULA
(row 0, the bottom row): r(n) = 2*r(n-2) + 2*r(n-3), with r(0) = 1, r(1) = 0, r(2) = 1, r(3) = 1;
(row 1, the middle row): r(n) = 2*r(n-2) + 2*r(n-3), with r(0) = 0, r(1) = 2, r(2) = 1, r(3) = 2;
(row 2, the top row): r(n) = 2*r(n-2) + 2*r(n-3), with r(0) = 0, r(1) = 0, r(2) = 1, r(3) = 2.
From Chai Wah Wu, Jan 24 2020: (Start)
a(n) = 2*a(n-6) + 2*a(n-9) for n > 14.
G.f.: (-x^14 - 2*x^11 + x^9 - x^8 - x^7 + x^6 - x^4 - 1)/(2*x^9 + 2*x^6 - 1). (End)
EXAMPLE
First 10 columns:
0 .. 0 .. 1 .. 2 .. 3 .. 6 .. 10 .. 18 .. 32 .. 56
0 .. 1 .. 1 .. 2 .. 4 .. 6 .. 12 .. 20 .. 36 .. 64
1 .. 0 .. 1 .. 1 .. 2 .. 4 .. 6 ... 12 .. 20 .. 36
T(4,1) counts these 4 paths, given as vector sums applied to (0,0):
(1,1) + (1,-1) + (2,1);
(2,1) + (1,-1) + (1,-1);
(2,1) + (1,1) + (1,-1);
(1,1) + (2,1) + (1,-1).
MATHEMATICA
t[0, 0] = 1; t[0, 1] = 0; t[0, 2] = 0;
t[1, 0] = 0; t[1, 1] = 1; t[1, 2] = 0;
t[2, 0] = 1; t[2, 1] = 1; t[2, 2] = 1; t[n_, 0] := t[n, 0] = t[n - 1, 1];
t[n_, 1] := t[n, 1] = t[n - 1, 0] + t[n - 1, 2] + t[n - 2, 0];
t[n_, 2] := t[n, 2] = t[n - 1, 1] + t[n - 2, 1];
TableForm[Reverse[Transpose[Table[t[n, k], {n, 0, 12}, {k, 0, 2}]]]]
Flatten[Table[t[n, k], {n, 0, 20}, {k, 0, 2}]] (* A247301 *)
CROSSREFS
Sequence in context: A070867 A241164 A029157 * A239858 A031437 A282561
KEYWORD
nonn,tabf,easy
AUTHOR
Clark Kimberling, Sep 11 2014
STATUS
approved