OFFSET
0,4
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..2500
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q) * eta(q^4) * eta(q^6)^12 / (eta(q^2) * eta(q^3)^5 * eta(q^12)^5) in powers of q.
Euler transform of period 12 sequence [-1, 0, 4, -1, -1, -7, -1, -1, 4, 0, -1, -3, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 246^(1/2) (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A246926.
EXAMPLE
G.f. = 1 - q + 4*q^3 - 5*q^4 + 4*q^6 - 8*q^7 + 2*q^9 - 4*q^10 + 12*q^12 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ -q^3, q^6] EllipticTheta[ 2, Pi/4, q^(1/2)] EllipticTheta[ 3, 0, q^3]^2 / (2^(1/2) q^(1/8)), {q, 0, n}];
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A) * eta(x^6 + A)^12 / (eta(x^2 + A) * eta(x^3 + A)^5 * eta(x^12 + A)^5), n))};
(Magma) A := Basis( ModularForms( Gamma0(36), 3/2), 70); A[1] - A[2] + 4*A[4] - 5*A[5] + 4*A[6];
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Sep 07 2014
STATUS
approved