OFFSET
0,3
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..2500
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of psi(x) * psi(x^2)^3 / psi(x^4) in powers of x where psi() is a Ramanujan theta function.
Expansion of q^(-3/8) * eta(q^4)^7 / (eta(q) * eta(q^2) * eta(q^8)^2) in powers of q.
Euler transform of period 8 sequence [1, 2, 1, -5, 1, 2, 1, -3, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = 2 (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A246816.
EXAMPLE
G.f. = 1 + x + 3*x^2 + 4*x^3 + 2*x^4 + 5*x^5 + 2*x^6 + 3*x^7 + 7*x^8 + ...
G.f. = q^3 + q^11 + 3*q^19 + 4*q^27 + 2*q^35 + 5*q^43 + 2*q^51 + 3*q^59 + ...
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[q^(-3/8)* eta[q^4]^7/(eta[q]*eta[q^2]*eta[q^8]^2), {q, 0, 60}], q]]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Aug 05 2018 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^7 / (eta(x + A) * eta(x^2 + A) * eta(x^8 + A)^2), n))};
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Michael Somos, Sep 04 2014
STATUS
approved