

A246817


Possible number of trailing zeros in hyperfactorials (A002109).


2



0, 5, 15, 30, 50, 100, 130, 165, 205, 250, 350, 405, 465, 530, 600, 750, 830, 915, 1005, 1100, 1300, 1405, 1515, 1630, 1750, 2125, 2255, 2390, 2530, 2675, 2975, 3130, 3290, 3455, 3625, 3975, 4155, 4340, 4530, 4725, 5125, 5330, 5540, 5755, 5975, 6425, 6655
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The number of trailing zeros in A002109 increases every 5 terms since the exponent of the factor 5 increases every 5 terms and the exponent of the factor 2 increases every 2 terms.


LINKS

Chai Wah Wu, Table of n, a(n) for n = 1..1000


PROG

(Python)
from sympy import multiplicity
A246817, p5 = [0], 0
for n in range(5, 5*10**3, 5):
....p5 += multiplicity(5, n)*n
....A246817.append(p5) # Chai Wah Wu, Sep 05 2014


CROSSREFS

Cf. A002109, A191610, A246839.
Sequence in context: A319930 A028895 A194150 * A010898 A048065 A048021
Adjacent sequences: A246814 A246815 A246816 * A246818 A246819 A246820


KEYWORD

nonn,base


AUTHOR

Chai Wah Wu, Sep 03 2014


STATUS

approved



