

A246800


Evenindexed terms of A247984, a sequence motivated by generalized quadrangles.


2



6, 10, 84, 186, 1276, 3172, 19816, 52666, 310764, 863820, 4899736, 14073060, 77509464, 228318856, 1228859344, 3693886906, 19513475404, 59644341436, 310223170744, 961665098956, 4936304385544, 15488087080696, 78602174905264, 249227373027556, 1252310513280376, 4007681094422392, 19961337935130096, 64408903437167496, 318297642651252784, 1034656923041985552
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Let p be an odd prime, let e be a positive integer, and let q = p^e. Dmytrenko, Lazebnik, and Williford (2007) proved that every monomial graph of girth at least eight is isomorphic to G = G_q(xy, x^ky^(2k)) for some integer k which is not divisible by p. If q = 3, then G is isomorphic to G_3(xy, xy^2). If q >= 5, then F(x) = ((x + 1)^(2k)  1)x^(q  1  k)  2x^(q  1) is a permutation polynomial, in which case the HermiteDickson Criterion implies that the coefficient at x^(q  1) in F(x)^n must equal 0 modulo p. Term b(n) of sequence A247984 lists the constant term of the coefficient at x^(q  1) in F(x)^n, and was first stated in Kronenthal (2012). The formula is defined piecewise, with b(n) = 2^n when n is odd and b(n) = 2^n  (1)^(n/2)*binomial(n, n/2) when n is even. The sequence a(n) listed here consists of the evenindexed terms of A247984; in other words, a(n) = 2^(2n)  (1)^(n)*binomial(2n, n). The provided Mathematica program produces the first 30 terms of the sequence.


LINKS

Table of n, a(n) for n=1..30.
V. Dmytrenko, F. Lazebnik, and J. Williford, On monomial graphs of girth eight, Finite Fields and Their Applications 13 (2007), 828842.
Brian G. Kronenthal, Monomial Graphs and Generalized Quadrangles, Finite Fields and Their Applications, 18 (2012), 674684.
B. G. Kronenthal, An Integer Sequence Motivated by Generalized Quadrangles, Journal of Integer Sequences, 2015, Vol. 18. #15.7.8.


FORMULA

a(n) = 2^(2n)  (1)^n * binomial(2n, n).
n*(4*n5)*a(n) +2*(4*n+3)*a(n1) 8*(4*n1)*(2*n3)*a(n2)=0.  R. J. Mathar, Jun 09 2018


MAPLE

A246800:=n>2^(2*n)(1)^n*binomial(2*n, n): seq(A246800(n), n=1..30); # Wesley Ivan Hurt, Nov 15 2014


MATHEMATICA

For[n=1, n<31, n++, Print[2^(2*n)(1)^(n)*Binomial[2n, n]]]


PROG

(MAGMA) [2^(2*n)(1)^n*Binomial(2*n, n) : n in [1..30]]; // Wesley Ivan Hurt, Nov 15 2014


CROSSREFS

Equals evenindexed terms of A247984.
Sequence in context: A166386 A280881 A256246 * A269341 A201921 A117310
Adjacent sequences: A246797 A246798 A246799 * A246801 A246802 A246803


KEYWORD

easy,nonn


AUTHOR

Brian G. Kronenthal, Nov 15 2014


STATUS

approved



