login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that A182134(n) = 3, i.e., there exist only three primes p with prime(n) < p < prime(n)^(1 + 1/n).
6

%I #35 Mar 23 2015 18:51:15

%S 12,13,16,18,20,21,27,31,34,39,44,53,59,60,65,96,97,98,99,136,154,202,

%T 214,215,220,221,280,324,325,326,365,366,736,780,2146,2225,3792,5946,

%U 5947,5948,6902,6903,18524,22078,23510,23511,23512,31542,31544,33606

%N Numbers n such that A182134(n) = 3, i.e., there exist only three primes p with prime(n) < p < prime(n)^(1 + 1/n).

%C Firoozbakht's conjecture states that for every n, there exists at least one prime p with prime(n) < p < prime(n)^(1+1/n).

%C The only known indices n for which A182134(n) = 1 are {1, 2, 3, 4, 8}.

%C See A246782 for indices n such that A182134(n) = 2.

%C This sequence lists numbers n such that A182134(n) = 3.

%H Robert Price, <a href="/A246781/b246781.txt">Table of n, a(n) for n = 1..170</a>

%H Carlos Rivera, <a href="http://www.primepuzzles.net/conjectures/conj_030.htm">Conjecture 30. The Firoozbakht Conjecture</a> PrimePuzzles.net.

%H A. Kourbatov, <a href="http://arxiv.org/abs/1503.01744">Verification of the Firoozbakht conjecture for primes up to four quintillion</a>, arXiv:1503.01744 [math.NT], 2015

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Firoozbakht%E2%80%99s_conjecture">Firoozbakht's conjecture</a>

%e 12 is in the sequence since there exists only three primes p where, prime(12) < p < prime(12)^(1 + 1/12). Note that prime(12) = 37, 37^(1 + 1/12) ~ 49.99 and 37 < 41 < 43 < 47 < 49.99.

%p N:= 10^5: # to get all terms where prime(n)^(1+1/n) < N

%p Primes:= select(isprime,[2,seq(2*i+1,i=1..floor((N+1)/2))]):

%p filter:= proc(n) local t; t:= Primes[n]^(n+1); Primes[n+3]^n <= t and Primes[n+4]^n > t end proc:

%p select(filter, [$1..nops(Primes)-4]); # _Robert Israel_, Mar 23 2015

%t np[n_] := (a = Prime[n]; b = a^(1 + 1/n); Length[Select[Range[a + 1, b], PrimeQ]]); Select[Range[10000], np[#] == 3 &]

%o (Haskell)

%o a246781 n = a246781_list !! (n-1)

%o a246781_list = filter ((== 3) . a182134) [1..]

%o -- _Reinhard Zumkeller_, Nov 17 2014

%Y Cf. A000040, A182134, A246782.

%Y Cf. A249566.

%K nonn

%O 1,1

%A _Farideh Firoozbakht_, Oct 12 2014

%E a(43)-a(50) from _Robert Price_, Oct 24 2014