login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246767
a(n) = n^4 - 2n.
1
0, -1, 12, 75, 248, 615, 1284, 2387, 4080, 6543, 9980, 14619, 20712, 28535, 38388, 50595, 65504, 83487, 104940, 130283, 159960, 194439, 234212, 279795, 331728, 390575, 456924, 531387, 614600, 707223, 809940, 923459, 1048512, 1185855, 1336268, 1500555, 1679544, 1874087, 2085060
OFFSET
1,3
COMMENTS
For n > 0, a(n) is the largest number k such that k + n divides k + n^4, or -1 if k is infinite. In general, for m > 0 and n > 0, the largest number k such that k + n divides k + n^m is given by k = n^m - 2*n. If k = -1 (when n = 1 for any m or when m = 1 for any n), it is infinite.
FORMULA
G.f.: -x^2*(3*x^3+5*x^2+17*x-1) / (x-1)^5. - Colin Barker, Sep 04 2014
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - Wesley Ivan Hurt, Jun 07 2021
MATHEMATICA
Table[n^4-2n, {n, 0, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, -1, 12, 75, 248}, 40] (* Harvey P. Dale, May 05 2019 *)
PROG
(PARI) vector(100, n, (n-1)^4-2*(n-1))
(PARI) concat(0, Vec(-x^2*(3*x^3+5*x^2+17*x-1)/(x-1)^5 + O(x^100))) \\ Colin Barker, Sep 04 2014
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Derek Orr, Sep 04 2014
STATUS
approved