Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Sep 02 2014 08:32:50
%S 1,1,4,11,47,172,725,2945,12592,53607,233115,1017428,4488097,19893325,
%T 88746008,397610355,1789394067,8081593288,36622787565,166442457597,
%U 758467464848,3464526761611,15859854880999,72747086739548,334290271569069,1538717057137809,7093579418490760
%N G.f.: 1 / AGM(1-5*x+x^2, 1+3*x+x^2).
%C Here AGM(x,y) = AGM((x+y)/2,sqrt(x*y)) is the arithmetic-geometric mean.
%H Vaclav Kotesovec, <a href="/A246652/b246652.txt">Table of n, a(n) for n = 0..1000</a>
%F G.f.: 1 / AGM(1-x+x^2, sqrt((1-x+x^2)^2 - 16*x^2)).
%F Recurrence: (n-3)*n^2*a(n) = (n-3)*(3*n^2 - 3*n + 1)*a(n-1) + (n-1)*(10*n^2 - 40*n + 31)*a(n-2) - (n-2)*(9*n^2 - 36*n + 29)*a(n-3) + (n-3)*(10*n^2 - 40*n + 31)*a(n-4) + (n-1)*(3*n^2 - 21*n + 37)*a(n-5) - (n-4)^2*(n-1)*a(n-6). - _Vaclav Kotesovec_, Sep 02 2014
%F a(n) ~ (5+sqrt(21))^(n+1) / (Pi * n * 2^(n+3)). - _Vaclav Kotesovec_, Sep 02 2014
%e G.f.: A(x) = 1 + x + 4*x^2 + 11*x^3 + 47*x^4 + 172*x^5 + 725*x^6 +...
%o (PARI) {a(n)=polcoeff( 1 / agm(1-5*x+x^2, 1+3*x+x^2 +x*O(x^n)), n)}
%o for(n=0, 30, print1(a(n), ", "))
%o (PARI) {a(n)=polcoeff( 1 / agm(1-x+x^2, sqrt((1-x+x^2)^2 - 16*x^2 +x*O(x^n))), n)}
%o for(n=0, 30, print1(a(n), ", "))
%K nonn
%O 0,3
%A _Paul D. Hanna_, Aug 31 2014