OFFSET
0,3
COMMENTS
Here AGM(x,y) = AGM((x+y)/2,sqrt(x*y)) is the arithmetic-geometric mean.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: 1 / AGM(1-x+x^2, sqrt((1-x+x^2)^2 - 16*x^2)).
Recurrence: (n-3)*n^2*a(n) = (n-3)*(3*n^2 - 3*n + 1)*a(n-1) + (n-1)*(10*n^2 - 40*n + 31)*a(n-2) - (n-2)*(9*n^2 - 36*n + 29)*a(n-3) + (n-3)*(10*n^2 - 40*n + 31)*a(n-4) + (n-1)*(3*n^2 - 21*n + 37)*a(n-5) - (n-4)^2*(n-1)*a(n-6). - Vaclav Kotesovec, Sep 02 2014
a(n) ~ (5+sqrt(21))^(n+1) / (Pi * n * 2^(n+3)). - Vaclav Kotesovec, Sep 02 2014
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 11*x^3 + 47*x^4 + 172*x^5 + 725*x^6 +...
PROG
(PARI) {a(n)=polcoeff( 1 / agm(1-5*x+x^2, 1+3*x+x^2 +x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=polcoeff( 1 / agm(1-x+x^2, sqrt((1-x+x^2)^2 - 16*x^2 +x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 31 2014
STATUS
approved