login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246652
G.f.: 1 / AGM(1-5*x+x^2, 1+3*x+x^2).
1
1, 1, 4, 11, 47, 172, 725, 2945, 12592, 53607, 233115, 1017428, 4488097, 19893325, 88746008, 397610355, 1789394067, 8081593288, 36622787565, 166442457597, 758467464848, 3464526761611, 15859854880999, 72747086739548, 334290271569069, 1538717057137809, 7093579418490760
OFFSET
0,3
COMMENTS
Here AGM(x,y) = AGM((x+y)/2,sqrt(x*y)) is the arithmetic-geometric mean.
LINKS
FORMULA
G.f.: 1 / AGM(1-x+x^2, sqrt((1-x+x^2)^2 - 16*x^2)).
Recurrence: (n-3)*n^2*a(n) = (n-3)*(3*n^2 - 3*n + 1)*a(n-1) + (n-1)*(10*n^2 - 40*n + 31)*a(n-2) - (n-2)*(9*n^2 - 36*n + 29)*a(n-3) + (n-3)*(10*n^2 - 40*n + 31)*a(n-4) + (n-1)*(3*n^2 - 21*n + 37)*a(n-5) - (n-4)^2*(n-1)*a(n-6). - Vaclav Kotesovec, Sep 02 2014
a(n) ~ (5+sqrt(21))^(n+1) / (Pi * n * 2^(n+3)). - Vaclav Kotesovec, Sep 02 2014
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 11*x^3 + 47*x^4 + 172*x^5 + 725*x^6 +...
PROG
(PARI) {a(n)=polcoeff( 1 / agm(1-5*x+x^2, 1+3*x+x^2 +x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=polcoeff( 1 / agm(1-x+x^2, sqrt((1-x+x^2)^2 - 16*x^2 +x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A149302 A149303 A053882 * A254202 A149304 A149305
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 31 2014
STATUS
approved