%I #18 Oct 27 2022 12:01:14
%S 6,48,282,1260,4896,16836,53232,156384,433776,1143696,2890266,7032576,
%T 16557084,37838052,84206724,182913216,388685430,809399280,1654446816,
%U 3323927340,6572070528,12801615744,24590359284,46619988384,87302773392,161597518272,295849759728
%N Second trisection of A246584.
%H Michael D. Hirschhorn, <a href="https://www.thebookshelf.auckland.ac.nz/docs/NZJMaths/nzjmaths042/nzjmaths042-00-021.pdf">A note on overcubic partitions</a>, New Zealand J. Math., 42:229-234, 2012.
%H Bernard L. S. Lin, <a href="https://doi.org/10.37236/4400">Arithmetic properties of overcubic partition pairs</a>, Electronic Journal of Combinatorics 21(3) (2014), #P3.35.
%F a(n) ~ exp(3*Pi*sqrt(n/2)) / (2^(19/4)*sqrt(3)*n^(5/4)). - _Vaclav Kotesovec_, Aug 16 2019
%F a(n) = A246584(3*n+2). - _Alois P. Heinz_, Oct 27 2022
%Y Cf. A246584, A246585, A246586.
%K nonn
%O 0,1
%A _N. J. A. Sloane_, Sep 03 2014