The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A246552 2-adic valuation of the number of involutions of n (A000085). 2
 0, 0, 1, 2, 1, 1, 2, 3, 2, 2, 3, 4, 3, 3, 4, 5, 4, 4, 5, 6, 5, 5, 6, 7, 6, 6, 7, 8, 7, 7, 8, 9, 8, 8, 9, 10, 9, 9, 10, 11, 10, 10, 11, 12, 11, 11, 12, 13, 12, 12, 13, 14, 13, 13, 14, 15, 14, 14, 15, 16, 15, 15, 16, 17, 16, 16, 17, 18, 17, 17, 18, 19, 18, 18, 19, 20, 19, 19, 20, 21, 20, 20, 21, 22, 21, 21, 22, 23, 22, 22, 23 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1). FORMULA a(n) = a(n-1) + a(n-4) - a(n-5). G.f.: x^2*(1+x-x^2)/((1-x)^2*(1+x)*(1+x^2)). a(n) = (3 - (-1)^n - (1+3*i)*(-i)^n - (1-i*3)*i^n + 2*n)/8 where i=sqrt(-1). - Colin Barker, Oct 16 2015 a(n) = (2*n+3-2*cos(n*Pi/2)-cos(n*Pi)-6*sin(n*Pi/2))/8. - Wesley Ivan Hurt, Oct 01 2017 MATHEMATICA CoefficientList[Series[x^2 (1 + x - x^2)/((1 - x)^2 (1 + x) (1 + x^2)), {x, 0, 100}], x] (* Vincenzo Librandi, Sep 06 2014 *) LinearRecurrence[{1, 0, 0, 1, -1}, {0, 0, 1, 2, 1}, 100] (* Harvey P. Dale, Jun 13 2016 *) PROG (PARI) N=166; x='x+O('x^N); v=Vec(serlaplace(exp(x+x^2/2))); vector(#v, n, valuation(v[n], 2)) (PARI) concat([0, 0], Vec(x^2*(1+x-x^2)/((1-x)^2*(1+x)*(1+x^2))+O(x^166))) (MAGMA) I:=[0, 0, 1, 2, 1]; [n le 5 select I[n] else Self(n-1)+Self(n-4)-Self(n-5): n in [1..100]]; // Vincenzo Librandi, Sep 06 2014 (PARI) a(n) = (3 - (-1)^n - (1+3*I)*(-I)^n - (1-I*3)*I^n + 2*n)/8 \\ Colin Barker, Oct 16 2015 CROSSREFS Cf. A000085 (involutions). Cf. A011371 (2-adic valuation of n!), A007814 (2-adic valuation of derangements (A000166)). Sequence in context: A144021 A334591 A177962 * A161091 A027347 A035438 Adjacent sequences:  A246549 A246550 A246551 * A246553 A246554 A246555 KEYWORD nonn,easy AUTHOR Joerg Arndt, Sep 06 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 17:47 EST 2022. Contains 350402 sequences. (Running on oeis4.)