The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A246400 Smallest prime Q greater than prime(n+1) such that the sum prime(n)+prime(n+1)+Q is also prime, starting with n=2. 2
 11, 11, 13, 17, 23, 23, 29, 31, 37, 41, 53, 47, 59, 67, 61, 71, 71, 73, 79, 89, 89, 97, 107, 109, 107, 127, 131, 127, 139, 139, 151, 157, 151, 157, 179, 167, 173, 181, 211, 197, 197, 223, 211, 211, 233, 227, 233, 263, 239, 271, 263, 269, 313, 277, 277, 281, 281 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS The sequence A152470 is a subsequence. LINKS Pierre CAMI, Table of n, a(n) for n = 2..10001 EXAMPLE 3+5+7=15 is composite and 3+5+11=19 is prime so a(2)=11. 5+7+11=23 is prime so a(3)=11. MATHEMATICA spq[n_]:=Module[{m=NextPrime[n], q}, q=NextPrime[m]; While[!PrimeQ[ m+n+q], q=NextPrime[q]]; q]; Table[spq[n], {n, Prime[Range[2, 60]]}] (* Harvey P. Dale, Apr 08 2018 *) PROG (PFGW & SCRIPT) SCRIPT DIM k DIM n, 1 OPENFILEOUT myf, a(n).txt LABEL loop1 SET n, n+1 IF n>10001 THEN END SET k, n+1 LABEL loop2 SET k, k+1 PRP p(n)+p(n+1)+p(k) IF ISPRP then GOTO a GOTO loop2 LABEL a WRITE myf, p(k) GOTO loop1 (PARI) a(n) = t=prime(n)+prime(n+1); k=n+2; while(!isprime(t+q=prime(k)), k++); q \\ Colin Barker, Aug 25 2014 CROSSREFS Cf. A152470. Sequence in context: A134036 A110415 A052257 * A180022 A003856 A167130 Adjacent sequences: A246397 A246398 A246399 * A246401 A246402 A246403 KEYWORD nonn AUTHOR Pierre CAMI, Aug 25 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 3 16:16 EST 2024. Contains 370512 sequences. (Running on oeis4.)