login
A246389
Nonnegative integers k satisfying sin(k) >= 0 and sin(k+1) >= 0.
4
0, 1, 2, 7, 8, 13, 14, 19, 20, 26, 27, 32, 33, 38, 39, 44, 45, 46, 51, 52, 57, 58, 63, 64, 70, 71, 76, 77, 82, 83, 88, 89, 90, 95, 96, 101, 102, 107, 108, 114, 115, 120, 121, 126, 127, 132, 133, 134, 139, 140, 145, 146, 151, 152, 158, 159, 164, 165, 170, 171
OFFSET
0,3
COMMENTS
A246388 and A038130 (Beatty sequence for 2*Pi) partition A022844 (Beatty sequence for Pi). Likewise, A054386, the complement of A022844, is partitioned by A246389 and A246390. (See the Mathematica program.)
LINKS
MAPLE
Digits := 100:
isA246389 := proc(k)
if evalf(sin(k)) >= 0 and evalf(sin(k+1)) >= 0 then
return true ;
else
return false ;
end if;
end proc:
A246389 := proc(n)
option remember ;
if n = 1 then
0;
else
for a from procname(n-1)+1 do
if isA246389(a) then
return a;
end if;
end do:
end if;
end proc:
seq(A246389(n), n=1..100) ; # assumes offset 1 R. J. Mathar, Jan 18 2024
MATHEMATICA
z = 400; f[x_] := Sin[x]
Select[Range[0, z], f[#]*f[# + 1] <= 0 &] (* A022844 *)
Select[Range[0, z], f[#] >= 0 && f[# + 1] <= 0 &] (* A246388 *)
Select[Range[0, z], f[#] <= 0 && f[# + 1] >= 0 &] (* A038130 *)
Select[Range[0, z], f[#]*f[# + 1] > 0 &] (* A054386 *)
Select[Range[0, z], f[#] >= 0 && f[# + 1] >= 0 &] (* A246389 *)
Select[Range[0, z], f[#] <= 0 && f[# + 1] <= 0 &] (* A246390 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 24 2014
STATUS
approved