login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246389
Nonnegative integers k satisfying sin(k) >= 0 and sin(k+1) >= 0.
4
0, 1, 2, 7, 8, 13, 14, 19, 20, 26, 27, 32, 33, 38, 39, 44, 45, 46, 51, 52, 57, 58, 63, 64, 70, 71, 76, 77, 82, 83, 88, 89, 90, 95, 96, 101, 102, 107, 108, 114, 115, 120, 121, 126, 127, 132, 133, 134, 139, 140, 145, 146, 151, 152, 158, 159, 164, 165, 170, 171
OFFSET
0,3
COMMENTS
A246388 and A038130 (Beatty sequence for 2*Pi) partition A022844 (Beatty sequence for Pi). Likewise, A054386, the complement of A022844, is partitioned by A246389 and A246390. (See the Mathematica program.)
LINKS
MAPLE
Digits := 100:
isA246389 := proc(k)
if evalf(sin(k)) >= 0 and evalf(sin(k+1)) >= 0 then
return true ;
else
return false ;
end if;
end proc:
A246389 := proc(n)
option remember ;
if n = 1 then
0;
else
for a from procname(n-1)+1 do
if isA246389(a) then
return a;
end if;
end do:
end if;
end proc:
seq(A246389(n), n=1..100) ; # assumes offset 1 R. J. Mathar, Jan 18 2024
MATHEMATICA
z = 400; f[x_] := Sin[x]
Select[Range[0, z], f[#]*f[# + 1] <= 0 &] (* A022844 *)
Select[Range[0, z], f[#] >= 0 && f[# + 1] <= 0 &] (* A246388 *)
Select[Range[0, z], f[#] <= 0 && f[# + 1] >= 0 &] (* A038130 *)
Select[Range[0, z], f[#]*f[# + 1] > 0 &] (* A054386 *)
Select[Range[0, z], f[#] >= 0 && f[# + 1] >= 0 &] (* A246389 *)
Select[Range[0, z], f[#] <= 0 && f[# + 1] <= 0 &] (* A246390 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 24 2014
STATUS
approved