The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A245977 Limit-reverse of the infinite Fibonacci word A014675 = (s(0),s(1),...) = (2,1,2,2,1,2,1,2, ...) using initial block (s(2),s(3)) = (2,2). 3
 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Suppose, as in A245920, that S = (s(0),s(1),s(2),...) is an infinite sequence such that every finite block of consecutive terms occurs infinitely many times in S.  (It is assumed that A014675 is such a sequence.)  Let B = B(m,k) = (s(m-k),s(m-k+1),...,s(m)) be such a block, where m >= 0 and k >= 0.  Let m(1) be the least i > m such that (s(i-k), s(i-k+1),...,s(i)) = B(m,k), and put B(m(1),k+1) = (s(m(1)-k-1),s(m(1)-k),...,s(m(1))).  Let m(2) be the least i > m(1) such that (s(i-k-1),s(i-k),...,s(i)) = B(m(1),k+1), and put B(m(2),k+2) = (s(m(2)-k-2),s(m(2)-k-1),...,s(m(2))).  Continuing in this manner gives a sequence of blocks B(m(n),k+n).  Let B'(n) = reverse(B(m(n),k+n)), so that for n >= 1, B'(n) comes from B'(n-1) by suffixing a single term; thus the limit of B'(n) is defined; we call it the "limit-reverse of S with initial block B(m,k)", denoted by S*(m,k), or simply S*. ... The sequence (m(i)), where m(0) = 0, is the "index sequence for limit-reversing S with initial block B(m,k)" or simply the index sequence for S*, as in A245921 and A245978. Apparently a(n) = A082389(n+2) = A059426(n+1). - R. J. Mathar, Sep 01 2014 LINKS Clark Kimberling, Table of n, a(n) for n = 0..300 EXAMPLE S = the infinite Fibonacci word A014675, with B = (s(2), s(3)); that is, (m,k) = (2,3) S = (2,1,2,2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,...) B'(0) = (2,2) B'(1) = (2,2,1) B'(2) = (2,2,1,2) B'(3) = (2,2,1,2,1) B'(4) = (2,2,1,2,1,2) B'(5) = (2,2,1,2,1,2,2) S* = (2,2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,1,...), with index sequence (3,8,11,16,21,29,...) MATHEMATICA z = 100; seqPosition2[list_, seqtofind_] := Last[Last[Position[Partition[list, Length[#], 1], Flatten[{___, #, ___}], 1, 2]]] &[seqtofind]; x = GoldenRatio; s = Differences[Table[Floor[n*x], {n, 1, z^2}]]; ans = Join[{s[[p[0] = pos = seqPosition2[s, #] - 1]]}, #] &[{s[[3]], s[[4]]}];  (* Initial block is (s(3), s(4))) [OR (s(2), s(3) if using offset 0] *); cfs = Table[s = Drop[s, pos - 1]; ans = Join[{s[[p[n] = pos = seqPosition2[s, #] - 1]]}, #] &[ans], {n, z}]; rcf = Last[Map[Reverse, cfs]] (* A245977 *) CROSSREFS Cf. A245978, A245979, A245920, A014675. Sequence in context: A144462 A112104 A059426 * A082389 A246127 A119469 Adjacent sequences:  A245974 A245975 A245976 * A245978 A245979 A245980 KEYWORD nonn AUTHOR Clark Kimberling and Peter J. C. Moses, Aug 10 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 6 14:04 EDT 2020. Contains 334827 sequences. (Running on oeis4.)