Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Jul 30 2023 09:04:22
%S 0,0,0,0,2,5,15,35,80,171,355,715,1410,2730,5208,9810,18280,33745,
%T 61785,112309,202840,364245,650705,1157015,2048532,3612900,6349200,
%U 11121300,19421150,33820061,58740915,101777495,175945280,303516015,522541903,897942115
%N Number of 4-cycles in the Lucas cube Lambda(n).
%C The vertex set of the Lucas cube Lambda(n) is the set of all binary strings of length n without consecutive 1's and without a 1 in the first and the last bit. Two vertices of the Lucas cube are adjacent if their strings differ in exactly one bit.
%H Vincenzo Librandi, <a href="/A245961/b245961.txt">Table of n, a(n) for n = 0..1000</a>
%H S. Klavzar, <a href="http://dx.doi.org/10.1016/j.disc.2004.02.023">On median nature and enumerative properties of Fibonacci-like cubes</a>, Discr. Math. 299 (2005), 145-153.
%H S. Klavzar, <a href="http://dx.doi.org/10.1007/s10878-011-9433-z">Structure of Fibonacci cubes: a survey</a>, J. Comb. Optim., 25, 2013, 505-522.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LucasCubeGraph.html">Lucas Cube Graph</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (3,0,-5,0,3,1).
%F a(n) = ((n-n^2)*F(n) + (3n^2 - 5n)*F(n-1))/10, where F(n) = A000045(n), the Fibonacci numbers. Formula follows from Eq. (4) of the Klavzar 2005 reference and from the first formula on p. 511 of the Klavzar 2013 reference.
%F a(n) = Sum(L(i)*b(n-3-i), i=0..n-4), where L(i) = A000032(i) are the Lucas numbers and b(j) = A001629(j+1) is the number of edges in the Fibonacci cube Gamma(j) (see Prop. 9 of the Klavzar 2005 reference).
%F a(n) = 3*a(n-1)-5*a(n-3)+3*a(n-5)+a(n-6). G.f.: x^4*(x-2) / (x^2+x-1)^3. - _Colin Barker_, Aug 11 2014
%F a(n) = 2*A001628(n-4)-A001628(n-5). - _R. J. Mathar_, Jul 24 2022
%F G.f.: (-2+x)*x^4/(-1+x+x^2)^3. - _Eric W. Weisstein_, Jul 29 2023
%e a(3)=0 because the Lucas cube Lambda(3) is the star-tree on 4 vertices.
%p with(combinat): a := proc (n) options operator, arrow: (1/10)*n*(1-n)*fibonacci(n)+(1/10)*n*(3*n-5)*fibonacci(n-1) end proc: seq(a(n), n = 0 .. 35);
%t Table[((n - n^2) Fibonacci[n] + (3 n^2 - 5 n) Fibonacci[n - 1])/10, {n, 0, 50}] (* _Vincenzo Librandi_, Aug 11 2014 *)
%t LinearRecurrence[{3, 0, -5, 0, 3, 1}, {0, 0, 0, 2, 5, 15}, 20] (* _Eric W. Weisstein_, Jul 29 2023 *)
%t CoefficientList[Series[(-2 + x) x^3/(-1 + x + x^2)^3, {x, 0, 20}], x] (* _Eric W. Weisstein_, Jul 29 2023 *)
%o (Magma) [((n-n^2)*Fibonacci(n) + (3*n^2 - 5*n)*Fibonacci(n-1))/10: n in [0..50]]; // _Vincenzo Librandi_, Aug 11 2014
%o (PARI) concat([0,0,0,0], Vec(x^4*(x-2)/(x^2+x-1)^3 + O(x^100))) \\ _Colin Barker_, Aug 13 2014
%Y Cf. A000045, A000032, A001628, A001629.
%Y Cf. A364605 (number of 6-cycles).
%K nonn,easy
%O 0,5
%A _Emeric Deutsch_, Aug 10 2014