login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245961
Number of 4-cycles in the Lucas cube Lambda(n).
3
0, 0, 0, 0, 2, 5, 15, 35, 80, 171, 355, 715, 1410, 2730, 5208, 9810, 18280, 33745, 61785, 112309, 202840, 364245, 650705, 1157015, 2048532, 3612900, 6349200, 11121300, 19421150, 33820061, 58740915, 101777495, 175945280, 303516015, 522541903, 897942115
OFFSET
0,5
COMMENTS
The vertex set of the Lucas cube Lambda(n) is the set of all binary strings of length n without consecutive 1's and without a 1 in the first and the last bit. Two vertices of the Lucas cube are adjacent if their strings differ in exactly one bit.
LINKS
S. Klavzar, On median nature and enumerative properties of Fibonacci-like cubes, Discr. Math. 299 (2005), 145-153.
S. Klavzar, Structure of Fibonacci cubes: a survey, J. Comb. Optim., 25, 2013, 505-522.
Eric Weisstein's World of Mathematics, Lucas Cube Graph
FORMULA
a(n) = ((n-n^2)*F(n) + (3n^2 - 5n)*F(n-1))/10, where F(n) = A000045(n), the Fibonacci numbers. Formula follows from Eq. (4) of the Klavzar 2005 reference and from the first formula on p. 511 of the Klavzar 2013 reference.
a(n) = Sum(L(i)*b(n-3-i), i=0..n-4), where L(i) = A000032(i) are the Lucas numbers and b(j) = A001629(j+1) is the number of edges in the Fibonacci cube Gamma(j) (see Prop. 9 of the Klavzar 2005 reference).
a(n) = 3*a(n-1)-5*a(n-3)+3*a(n-5)+a(n-6). G.f.: x^4*(x-2) / (x^2+x-1)^3. - Colin Barker, Aug 11 2014
a(n) = 2*A001628(n-4)-A001628(n-5). - R. J. Mathar, Jul 24 2022
G.f.: (-2+x)*x^4/(-1+x+x^2)^3. - Eric W. Weisstein, Jul 29 2023
EXAMPLE
a(3)=0 because the Lucas cube Lambda(3) is the star-tree on 4 vertices.
MAPLE
with(combinat): a := proc (n) options operator, arrow: (1/10)*n*(1-n)*fibonacci(n)+(1/10)*n*(3*n-5)*fibonacci(n-1) end proc: seq(a(n), n = 0 .. 35);
MATHEMATICA
Table[((n - n^2) Fibonacci[n] + (3 n^2 - 5 n) Fibonacci[n - 1])/10, {n, 0, 50}] (* Vincenzo Librandi, Aug 11 2014 *)
LinearRecurrence[{3, 0, -5, 0, 3, 1}, {0, 0, 0, 2, 5, 15}, 20] (* Eric W. Weisstein, Jul 29 2023 *)
CoefficientList[Series[(-2 + x) x^3/(-1 + x + x^2)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Jul 29 2023 *)
PROG
(Magma) [((n-n^2)*Fibonacci(n) + (3*n^2 - 5*n)*Fibonacci(n-1))/10: n in [0..50]]; // Vincenzo Librandi, Aug 11 2014
(PARI) concat([0, 0, 0, 0], Vec(x^4*(x-2)/(x^2+x-1)^3 + O(x^100))) \\ Colin Barker, Aug 13 2014
CROSSREFS
Cf. A364605 (number of 6-cycles).
Sequence in context: A226103 A000962 A118387 * A034522 A276720 A148339
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Aug 10 2014
STATUS
approved