The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A245877 Primes p such that p - d and p + d are also primes, where d is the largest digit of p. 2
 263, 563, 613, 653, 1613, 1663, 3463, 4643, 5563, 5653, 6263, 6323, 12653, 13463, 14633, 16063, 16223, 21163, 21563, 25463, 26113, 30643, 32063, 33623, 36313, 41263, 41603, 44263, 53623, 54623, 56003, 60133, 61553, 62213, 62633, 64013, 65413, 105613, 106213 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Intersection of A245742 and A245743. The largest digit of a(n) is 6, and the least significant digit of a(n) is 3. Intersection of A006489, A011536, and complements of A011537, A011538, A011539. - Robert Israel, Aug 05 2014 LINKS Harvey P. Dale, Table of n, a(n) for n = 1..1000 EXAMPLE The prime 263 is in the sequence because 263 - 6 = 257 and 263 + 6 = 269 are both primes. MATHEMATICA pdpQ[n_]:=Module[{m=Max[IntegerDigits[n]]}, AllTrue[n+{m, -m}, PrimeQ]]; Select[ Prime[Range[11000]], pdpQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 13 2017 *) PROG (PARI) select(p->d=vecsort(digits(p), , 4)[1]; isprime(p-d) && isprime(p+d), primes(20000)) (Python) import sympy from sympy import prime from sympy import isprime for n in range(1, 10**5): ..s=prime(n) ..lst = [] ..for i in str(s): ....lst.append(int(i)) ..if isprime(s+max(lst)) and isprime(s-max(lst)): ....print(s, end=', ') # Derek Orr, Aug 13 2014 CROSSREFS Cf. A006489, A245742, A245743, A245744, A245745, A245878. Sequence in context: A288502 A320710 A142754 * A142379 A128654 A236245 Adjacent sequences: A245874 A245875 A245876 * A245878 A245879 A245880 KEYWORD nonn,base AUTHOR Colin Barker, Aug 05 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 1 13:43 EDT 2023. Contains 365826 sequences. (Running on oeis4.)