login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A245842
Triangle T read by rows: T(n,k) = Total number of even parts in all partitions of n with exactly k parts, 1 <= k <= n.
4
0, 1, 0, 0, 1, 0, 1, 2, 1, 0, 0, 2, 2, 1, 0, 1, 2, 5, 2, 1, 0, 0, 3, 4, 5, 2, 1, 0, 1, 4, 7, 8, 5, 2, 1, 0, 0, 4, 8, 10, 8, 5, 2, 1, 0, 1, 4, 12, 14, 15, 8, 5, 2, 1, 0, 0, 5, 12, 19, 18, 15, 8, 5, 2, 1, 0, 1, 6, 18, 24, 27, 24, 15, 8, 5, 2, 1, 0
OFFSET
1,8
COMMENTS
Column sequences appear to converge to A066897.
LINKS
FORMULA
T(n,k) + A245840(n,k) = A172467(n,k).
EXAMPLE
Triangle begins
0
1 0
0 1 0
1 2 1 0
0 2 2 1 0
1 2 5 2 1 0
0 3 4 5 2 1 0
1 4 7 8 5 2 1 0
0 4 8 10 8 5 2 1 0
1 4 12 14 15 8 5 2 1 0
0 5 12 19 18 15 8 5 2 1 0
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, [`if`(k=0, 1, 0), 0],
`if`(i<1 or k=0, [0$2], ((f, g)-> f+g+[0, `if`(irem(i, 2)=0,
g[1], 0)])(b(n, i-1, k), `if`(i>n, [0$2], b(n-i, i, k-1)))))
end:
T:= (n, k)-> b(n$2, k)[2]:
seq(seq(T(n, k), k=1..n), n=1..14); # Alois P. Heinz, Aug 04 2014
MATHEMATICA
Grid[Table[Sum[Count[Flatten[IntegerPartitions[n, {k}]], i], {i, 2, n, 2}], {n, 11}, {k, n}]]
(* second program: *)
b[n_, i_, k_] := b[n, i, k] = If[n == 0, {If[k == 0, 1, 0], 0}, If[i < 1 || k == 0, {0, 0}, Function[{f, g}, f + g + {0, If[Mod[i, 2] == 0, g[[1]], 0]}][b[n, i-1, k], If[i > n, {0, 0}, b[n-i, i, k-1]]]]];
T[n_, k_] := b[n, n, k][[2]];
Table[Table[T[n, k], {k, 1, n}], {n, 1, 14}] // Flatten (* Jean-François Alcover, May 21 2016, after Alois P. Heinz *)
CROSSREFS
Cf. A245843 (partial sums of row entries).
Cf. A066898 (row sums), A172467.
Sequence in context: A328795 A353846 A055791 * A300574 A352194 A327757
KEYWORD
nonn,tabl
AUTHOR
L. Edson Jeffery, Aug 03 2014
STATUS
approved