login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Permutation of natural numbers: a(n) = A245704(A091204(n)).
9

%I #17 Nov 10 2024 05:46:03

%S 1,2,3,4,5,8,7,9,6,16,11,10,19,33,12,25,17,15,23,34,39,70,13,24,26,50,

%T 21,52,53,18,31,55,77,93,54,22,29,27,66,105,67,48,137,156,30,28,37,64,

%U 91,35,85,58,97,49,40,98,36,135,59,45,47,261,56,76,92,122,83,374,38,102,139,69,167,130,88,203,351,212,349,235,14

%N Permutation of natural numbers: a(n) = A245704(A091204(n)).

%H Antti Karttunen, <a href="/A245822/b245822.txt">Table of n, a(n) for n = 1..10001</a>

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%F a(n) = A245704(A091204(n)).

%F Other identities. For all n >= 1, the following holds:

%F A078442(a(n)) = A078442(n), A049076(a(n)) = A049076(n). [Preserves "the order of primeness of n"].

%F a(p_n) = p_{a(n)} where p_n is the n-th prime, A000040(n).

%F a(n) = A049084(a(A000040(n))). [Thus the same permutation is induced also when it is restricted to primes].

%F A245816(n) = A062298(a(A018252(n))). [While restriction to nonprimes induces another permutation].

%o (PARI)

%o allocatemem(123456789);

%o default(primelimit, 2^22)

%o v014580 = vector(2^18); A014580(n) = v014580[n];

%o v091226 = vector(2^22); A091226(n) = v091226[n];

%o A002808(n)={ my(k=-1); while( -n + n += -k + k=primepi(n), ); n}; \\ This function from _M. F. Hasler_

%o isA014580(n)=polisirreducible(Pol(binary(n))*Mod(1, 2)); \\ This function from _Charles R Greathouse IV_

%o i=0; j=0; n=2; while((n < 2^22), if(isA014580(n), i++; v014580[i] = n; v091226[n] = v091226[n-1]+1, v091226[n] = v091226[n-1]); n++)

%o A091204(n) = if(n<=1, n, if(isprime(n), A014580(A091204(primepi(n))), {my(pfs, t, bits, i); pfs=factor(n); pfs[,1]=apply(t->Pol(binary(A091204(t))), pfs[,1]); sum(i=1, #bits=Vec(factorback(pfs))%2, bits[i]<<(#bits-i))}));

%o A091245(n) = ((n-A091226(n))-1);

%o A245704(n) = if(1==n, 1, if(isA014580(n), prime(A245704(A091226(n))), A002808(A245704(A091245(n)))));

%o A245822(n) = A245704(A091204(n));

%o for(n=1, 10001, write("b245822.txt", n, " ", A245822(n)));

%o (Scheme) (define (A245822 n) (A245704 (A091204 n)))

%Y Inverse: A245821.

%Y Other related permutations: A091204, A245704, A245816.

%Y Fixed points: A245823.

%Y Cf. A000040, A049084, A078442, A049076, A018252, A062298.

%K nonn

%O 1,2

%A _Antti Karttunen_, Aug 02 2014