OFFSET
0,17
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..400
FORMULA
E.g.f.: 1/(2 + x - exp(x) + x^2/2! + x^3/3! + x^4/4! + x^5/5! + x^6/6! + x^7/7!). - Vaclav Kotesovec, Aug 02 2014
a(n) ~ n! / ((1+r^7/7!) * r^(n+1)), where r = 3.550140591759854453327299... is the root of the equation 2 + r - exp(r) + r^2/2! + r^3/3! + r^4/4! + r^5/5! + r^6/6! + r^7/7! = 0. - Vaclav Kotesovec, Aug 02 2014
MAPLE
a:= proc(n) option remember; `if`(n=0, 1,
add(a(n-j)*binomial(n, j), j=8..n))
end:
seq(a(n), n=0..35);
MATHEMATICA
CoefficientList[Series[1/(2 + x - E^x + x^2/2! + x^3/3! + x^4/4! + x^5/5! + x^6/6! + x^7/7!), {x, 0, 40}], x]*Range[0, 40]! (* Vaclav Kotesovec, Aug 02 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 01 2014
STATUS
approved