login
A245793
Number of preferential arrangements of n labeled elements when at least k=8 elements per rank are required.
4
1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 12871, 48621, 136137, 335921, 772617, 1700273, 3633105, 7607297, 9481216677, 78911366771, 433024685291, 1961914734031, 7943932891111, 29871106149031, 106624217245891, 366332387265871, 100783979161693411
OFFSET
0,17
LINKS
FORMULA
E.g.f.: 1/(2 + x - exp(x) + x^2/2! + x^3/3! + x^4/4! + x^5/5! + x^6/6! + x^7/7!). - Vaclav Kotesovec, Aug 02 2014
a(n) ~ n! / ((1+r^7/7!) * r^(n+1)), where r = 3.550140591759854453327299... is the root of the equation 2 + r - exp(r) + r^2/2! + r^3/3! + r^4/4! + r^5/5! + r^6/6! + r^7/7! = 0. - Vaclav Kotesovec, Aug 02 2014
MAPLE
a:= proc(n) option remember; `if`(n=0, 1,
add(a(n-j)*binomial(n, j), j=8..n))
end:
seq(a(n), n=0..35);
MATHEMATICA
CoefficientList[Series[1/(2 + x - E^x + x^2/2! + x^3/3! + x^4/4! + x^5/5! + x^6/6! + x^7/7!), {x, 0, 40}], x]*Range[0, 40]! (* Vaclav Kotesovec, Aug 02 2014 *)
CROSSREFS
Cf. column k=8 of A245732.
Sequence in context: A172560 A031805 A244171 * A251922 A184453 A233936
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 01 2014
STATUS
approved