|
|
A245792
|
|
Number of preferential arrangements of n labeled elements when at least k=7 elements per rank are required.
|
|
4
|
|
|
1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 3433, 12871, 35751, 87517, 199785, 436697, 927657, 401005793, 3296326113, 17887397621, 80157730101, 321127444171, 1195366208091, 4226755326331, 486914893507831, 6899197122043711, 61532746814157691, 436349292456987871
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,15
|
|
LINKS
|
|
|
FORMULA
|
E.g.f.: 1/(2 + x - exp(x) + x^2/2! + x^3/3! + x^4/4! + x^5/5! + x^6/6!). - Vaclav Kotesovec, Aug 02 2014
a(n) ~ n! / ((1+r^6/6!) * r^(n+1)), where r = 3.161936258680679649... is the root of the equation 2 + r - exp(r) + r^2/2! + r^3/3! + r^4/4! + r^5/5! + r^6/6! = 0. - Vaclav Kotesovec, Aug 02 2014
|
|
MAPLE
|
a:= proc(n) option remember; `if`(n=0, 1,
add(a(n-j)*binomial(n, j), j=7..n))
end:
seq(a(n), n=0..35);
|
|
MATHEMATICA
|
CoefficientList[Series[1/(2 + x - E^x + x^2/2! + x^3/3! + x^4/4! + x^5/5! + x^6/6!), {x, 0, 40}], x]*Range[0, 40]! (* Vaclav Kotesovec, Aug 02 2014 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|