login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245747
Number of identity trees with n nodes where the maximal outdegree (branching factor) equals 2.
2
1, 2, 5, 10, 21, 42, 87, 178, 371, 773, 1630, 3447, 7346, 15712, 33790, 72922, 158020, 343494, 749101, 1638102, 3591723, 7893801, 17387930, 38379199, 84875595, 188036829, 417284180, 927469844, 2064465340, 4601670624, 10270463564, 22950838754, 51346678940
OFFSET
4,2
LINKS
FORMULA
a(n) = A063895(n+1)-1.
MAPLE
b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(binomial(b(i-1$2, k$2), j)*
b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
end:
a:= n-> b(n-1$2, 2$2) -b(n-1$2, 1$2):
seq(a(n), n=4..60);
MATHEMATICA
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[ b[i-1, i-1, k, k], j]*b[n-i*j, i-1, t - j, k], {j, 0, Min[t, n/i]}]]];
a[n_] := b[n-1, n-1, 2, 2] - b[n-1, n-1, 1, 1];
Table[a[n], {n, 4, 60}] (* Jean-François Alcover, Aug 28 2021, after Maple code *)
CROSSREFS
Column k=2 of A244523.
Sequence in context: A215410 A279668 A352875 * A032283 A266248 A027437
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Jul 31 2014
STATUS
approved