login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A032283
"DIK" (bracelet, indistinct, unlabeled) transform of 2,2,2,2...
4
2, 5, 10, 21, 42, 95, 210, 510, 1258, 3249, 8538, 23033, 62778, 173451, 482690, 1353075, 3811362, 10785233, 30625194, 87239997, 249174234, 713416599, 2046945138, 5884580072, 16946835090, 48883925865, 141217957618, 408519816609, 1183291934298, 3431535849811
OFFSET
1,1
FORMULA
G.f.: (x*(2+3*x-x^2)/((1-x)*(1-3*x^2)) + Sum_{d>0} phi(d)*log((1-x^d)/(1-3*x^d))/d)/2. - Andrew Howroyd, Jun 20 2018
MATHEMATICA
seq[n_] := (x*(2 + 3*x - x^2)/((1 - x)*(1 - 3*x^2)) + Sum[EulerPhi[d]*(Log[(1 - x^d)/(1 - 3*x^d)]/d), {d, 1, n}])/2 + O[x]^(n + 1) // CoefficientList[#, x]& // Rest;
seq[30] (* Jean-François Alcover, Jul 02 2018, after Andrew Howroyd *)
PROG
(PARI) seq(n)={Vec(sum(d=1, n, eulerphi(d)/d*log((1-x^d)/(1-3*x^d) + O(x*x^n))) + x*(2+3*x-x^2)/((1-x)*(1-3*x^2)))/2} \\ Andrew Howroyd, Jun 20 2018
CROSSREFS
Sequence in context: A279668 A352875 A245747 * A266248 A027437 A267444
KEYWORD
nonn
EXTENSIONS
Terms a(28) and beyond from Andrew Howroyd, Jun 20 2018
STATUS
approved