login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245575
Number of ways of writing n as the sum of two quarter-squares (cf. A002620).
5
1, 2, 3, 2, 3, 2, 4, 2, 3, 2, 4, 2, 3, 4, 2, 2, 4, 2, 5, 0, 4, 4, 4, 0, 3, 4, 4, 2, 2, 4, 2, 4, 5, 0, 4, 0, 6, 4, 2, 2, 3, 2, 6, 2, 2, 4, 4, 0, 4, 2, 5, 4, 2, 2, 2, 4, 4, 2, 6, 0, 3, 4, 4, 0, 2, 6, 4, 2, 4, 2, 2, 0, 7, 4, 4, 0, 6, 0, 4, 2, 2, 6, 2, 2, 5, 4
OFFSET
0,2
COMMENTS
a(n) is also the number of times n appears in the triangle A338796, or equivalently, the number of positive integer solutions of the equation A338796(x, y) = n for y <= x. - Stefano Spezia, Mar 03 2022
LINKS
FORMULA
a(A182834(n)) mod 2 = 0; a(A007550(n)) mod 2 = 1;
a(A240952(n)) = n and a(A240952(m)) <> n for m < a(n);
a(A245585(n)) = 0.
EXAMPLE
a(10) = #{9+1, 6+4, 4+6, 1+9} = 4;
a(11) = #{9+2, 2+9} = 2;
a(12) = #{12+0, 6+6, 0+12} = 3;
a(13) = #{12+1, 9+4, 4+9, 1+12} = 4;
a(14) = #{6+1, 1+6} = 2;
a(15) = #{9+6, 6+9} = 2;
a(16) = #{16+0, 12+4, 4+12, 0+16} = 4;
a(17) = #{16+1, 1+16} = 2;
a(18) = #{16+2, 12+6, 9+9, 6+12, 2+16} = 5;
a(19) = #{} = 0;
a(20) = #{20+0, 16+4, 4+16, 0+20} = 4.
MATHEMATICA
qsQ[n_] := qsQ[n] = With[{s = Sqrt[n]}, Which[IntegerQ[s], True, n == Floor[s] (Floor[s]+1), True, True, False]]; a[n_] := Count[Range[0, n], k_ /; qsQ[k] && qsQ[n-k]]; Array[a, 100, 0] (* Jean-François Alcover, May 08 2017 *) (* or *)
u[{x_, y_}] := 2-Boole[x==y]; a[n_] := Total[u /@ IntegerPartitions[n, {2}, Floor[Range[1 + 2 Sqrt@ n]^2/4]]]; Array[a, 100, 0] (* Giovanni Resta, May 08 2017 *)
PROG
(Haskell)
a245575 n = a245575_list !! n
a245575_list = f 0 [] $ tail a002620_list where
f u vs ws'@(w:ws)
| u < w = (sum $ map (a240025 . (u -)) vs) : f (u + 1) vs ws'
| otherwise = f u (w : vs) ws
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Aug 04 2014
STATUS
approved