OFFSET
1,4
COMMENTS
LINKS
M. Drmota and M. Gajdosik, The parity of the sum of digits function of generalized Zeckendorf expansions, The Fibonacci Quarterly, 36:1 (1988), pp. 3-19.
EXAMPLE
a(12) = 3 because 12 = 8 + 3 + 1 = 8 + 2 + 2 = 5 + 5 + 2 has three distinct representations.
MAPLE
L:=[1, 2, 3, 5, 8, 13, 21, 34, 55]; LC:=[1, 1, 1, 2, 1, 2, 1, 1, 1]:LS:=[1, 1, 1, 2, 1, 2, 2, 1, 2]: for n from 10 to 88 do: ct:=0: ss:=n: sm:=n: b0:=1: b1:=2: b2:=3: b3:=4: b4:=trunc(n/L[5]): b5:=trunc(n/L[6]): b6:=trunc(n/L[7]):b7:=trunc(n/L[8]):b8:=trunc(n/L[9]):
> for n0 from 0 to b0 do:for n1 from 0 to b1 do: for n2 from 0 to b2 do:for n3 from 0 to b3 do: for n4 from 0 to b4 do: for n5 from 0 to b5 do: for n6 from 0 to b6 do:
> for n7 from 0 to b7 do:for n8 from 0 to b8 do: if n=n0*L[1]+n1*L[2]+n2*L[3]+n3*L[4]+n4*L[5]+n5*L[6]+n6*L[7]+n7*L[8]+n8*L[9] then ss:=n0+n1+n2+n3+n4+n5+n6+n7+n8:fi:
> if sm>ss then sm:=ss: fi: od:od:od:od:od:od:od:od:od:for n0 from 0 to b0 do:for n1 from 0 to b1 do: for n2 from 0 to b2 do:for n3 from 0 to b3 do:
> for n4 from 0 to b4 do:for n5 from 0 to b5 do:for n6 from 0 to b6 do:
> for n7 from 0 to b7 do:for n8 from 0 to b8 do:
> if n=n0*L[1]+n1*L[2]+n2*L[3]+n3*L[4]+n4*L[5]+n5*L[6]+n6*L[7]+n7*L[8]+n8*L[9] then st:=n0+n1+n2+n3+n4+n5+n6+n7+n8: if st=sm then ct:=ct+1: fi:fi: od; od:od:od:od:od:od:od:od: LS:=[op(LS), sm]: LC:=[op(LC), ct]: od: print(LC):
CROSSREFS
KEYWORD
nonn
AUTHOR
Patrick Okolo Edeogu, Oct 20 2015
STATUS
approved