login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245519
Number of alpha-labeled graphs with n edges and at most n vertices.
0
0, 0, 0, 2, 10, 64, 336, 1872, 11104, 71944, 508032, 3511232, 27192704, 223750464, 1947253504, 17899536448, 173156535168, 1760383827776, 18752453106176, 209034916385472, 2432351796434560, 29509268795249700
OFFSET
1,4
LINKS
Christian Barrientos, Sarah Minion, On the number of alpha-labeled graphs, Discussiones Mathematicae Graph Theory, to appear.
J. A. Gallian, A dynamic survey of graph labeling, Elec. J. Combin., (2013), #DS6.
David A. Sheppard, The factorial representation of major balanced labelled graphs, Discrete Math., 15(1976), no. 4, 379-388.
FORMULA
a(n) = Sum_{L=1..n-2} Sum_{i=1..n-1} Product_{k=1..n} d(L,k,i), where
for i < L,
d(L,k) if 1 <= k <= i,
d(L,k,i) ={ d(L,k) - 1 if i < k < n - i,
d(L,k) if n - i <= k <= n;
for i > L + 1,
d(L,k) if 1 <= k <= n - i,
d(L,k,i) ={ d(L,k) - 1 if n - i < k < n - i + L + 2,
d(L,k) if n - i + L + 2 <= k <= n.
k if 1 <= k < m,
d(L,k) ={ L + 1 if m <= k <= M,
n + 1 - k if M < k <= n,
m = min{L + 1, n - L}, M = max{L + 1, n - L}.
EXAMPLE
For n=4, a(4)=2, there are 2 alpha-labeled graphs with 4 edges and at most 4 vertices.
For n=10, a(10)=71944, there are 71944 alpha-labeled graphs with 10 edges and at most 10 vertices.
CROSSREFS
Sequence in context: A175962 A183165 A129130 * A303483 A186268 A078531
KEYWORD
nonn,easy
AUTHOR
STATUS
approved