login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245433
Expansion of f(-x^3, -x^5)^2 / (psi(-x) * psi(x^2)) in powers of x where psi() is a Ramanujan theta function and f(, ) is Ramanujan's general theta functions.
3
1, 1, 0, -1, 1, 1, -2, -2, 3, 4, -4, -5, 5, 6, -8, -9, 12, 13, -14, -17, 18, 21, -26, -28, 34, 39, -42, -49, 53, 60, -70, -78, 90, 101, -110, -125, 137, 153, -174, -192, 217, 241, -264, -295, 322, 357, -400, -438, 490, 540, -588, -652, 711, 781, -866, -946
OFFSET
0,7
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Euler transform of period 8 sequence [1, -1, -1, 2, -1, -1, 1, 0, ...].
Given g.f. A(x), then B(q) = A(q^4) / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (u^2 - v)^3 - 4 * u^2 * v^3 * (2*v - u^2) * (u^2*v - v^2 - 2).
a(n) = A111374(2*n) = A245436(4*n - 1).
EXAMPLE
G.f. = 1 + x - x^3 + x^4 + x^5 - 2*x^6 - 2*x^7 + 3*x^8 + 4*x^9 + ...
G.f. = 1/q + q^3 - q^11 + q^15 + q^19 - 2*q^23 - 2*q^27 + 3*q^31 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{-1, 1, 1, -2, 1, 1, -1, 0}[[Mod[k, 8, 1]]], {k, n}], {x, 0, n}]; (* Michael Somos, Jun 27 2017 *)
f[x_, y_]:= QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; a:= CoefficientList[Series[f[-x^3, -x^5]^2/(f[-x, -x^3]*f[x^2, x^6]), {x, 0, 60}], x]]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Aug 06 2018 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^[0, -1, 1, 1, -2, 1, 1, -1][k%8 + 1]), n))};
CROSSREFS
Sequence in context: A029091 A175858 A272613 * A168560 A333942 A065361
KEYWORD
sign
AUTHOR
Michael Somos, Jul 21 2014
STATUS
approved