OFFSET
0,2
COMMENTS
a(n) is the length of the short side (rounded down) of the parallelogram appearing in the dissection fallacy using the square F(n+3) X F(n+3) (see the links and references). Let the actual length of the short side be L(n) and the one of the long side LL(n), then L(n) = LL(n-1). See the Ngaokrajang link for an illustration. Also floor(LL(n)*L(n)) = A014742(n), n >= 1 (proof by Wolfdieter Lang given there).
Note that F(n+2)^2 + F(n)^2 = 3*F(n+1)^2 - 2*(-1)^n = A069921(n). It appears that for n > 1, a(n) = floor(sqrt(3)*F(n+1)). - Robert Israel, Jul 16 2014
REFERENCES
T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, 2001, ch. 6, pp. 100-108.
LINKS
Kival Ngaokrajang, Illustration of initial terms.
Eric Weisstein's World of Mathematics, Dissection Fallacy.
Wikipedia, Missing square puzzle.
FORMULA
MAPLE
A245271 := n -> floor(sqrt(3*combinat:-fibonacci(n+1)^2 - 2*(-1)^n)):
seq(A245271(n), n=0..100); # Robert Israel, Jul 16 2014
MATHEMATICA
Table[Floor[Sqrt[Fibonacci[n + 2]^2 + Fibonacci[n]^2]], {n, 0, 50}] (* Wesley Ivan Hurt, Jul 17 2014 *)
PROG
(PARI) a(n) = sqrtint(fibonacci(n+2)^2 + fibonacci(n)^2)
for (n=0, 50, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Kival Ngaokrajang, Jul 15 2014
EXTENSIONS
STATUS
approved