login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245271
a(n) = floor(sqrt(F(n+2)^2 + F(n)^2)), where F(n) = A000045(n).
1
1, 2, 3, 5, 8, 13, 22, 36, 58, 95, 154, 249, 403, 652, 1056, 1709, 2766, 4475, 7241, 11717, 18959, 30676, 49635, 80311, 129947, 210258, 340205, 550464, 890670, 1441135, 2331806, 3772941, 6104748, 9877690, 15982438, 25860128, 41842566, 67702694, 109545261, 177247955
OFFSET
0,2
COMMENTS
a(n) is the length of the short side (rounded down) of the parallelogram appearing in the dissection fallacy using the square F(n+3) X F(n+3) (see the links and references). Let the actual length of the short side be L(n) and the one of the long side LL(n), then L(n) = LL(n-1). See the Ngaokrajang link for an illustration. Also floor(LL(n)*L(n)) = A014742(n), n >= 1 (proof by Wolfdieter Lang given there).
Note that F(n+2)^2 + F(n)^2 = 3*F(n+1)^2 - 2*(-1)^n = A069921(n). It appears that for n > 1, a(n) = floor(sqrt(3)*F(n+1)). - Robert Israel, Jul 16 2014
REFERENCES
T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, 2001, ch. 6, pp. 100-108.
LINKS
Kival Ngaokrajang, Illustration of initial terms.
Eric Weisstein's World of Mathematics, Dissection Fallacy.
FORMULA
a(n) = floor(sqrt(F(n+2)^2 + F(n)^2)), n >= 0, with F(n) = A000045(n), and F(n+2)^2 + F(n)^2 = A069921(n).
a(n) = A000196(A069921(n)). - Jason Yuen, Nov 10 2024
MAPLE
A245271 := n -> floor(sqrt(3*combinat:-fibonacci(n+1)^2 - 2*(-1)^n)):
seq(A245271(n), n=0..100); # Robert Israel, Jul 16 2014
MATHEMATICA
Table[Floor[Sqrt[Fibonacci[n + 2]^2 + Fibonacci[n]^2]], {n, 0, 50}] (* Wesley Ivan Hurt, Jul 17 2014 *)
PROG
(PARI) a(n) = sqrtint(fibonacci(n+2)^2 + fibonacci(n)^2)
for (n=0, 50, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Kival Ngaokrajang, Jul 15 2014
EXTENSIONS
A069921 added to Crossrefs and to the Robert Israel comment by Wolfdieter Lang, Jul 17 2014
STATUS
approved