login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that A245212(k) < 0.
9

%I #20 Jul 19 2024 14:27:56

%S 144,192,216,240,288,336,360,384,432,480,504,540,576,600,648,672,720,

%T 768,792,840,864,900,936,960,1008,1056,1080,1152,1200,1248,1260,1296,

%U 1320,1344,1440,1512,1536,1560,1584,1620,1632,1680,1728,1800,1824,1848,1872,1920,1944,1980,2016,2040,2100,2112,2160,2240

%N Numbers k such that A245212(k) < 0.

%C If d are divisors of k then values of sequence A245212(k) are by bending moments in point 0 of static forces of sizes tau(d) operating in places d on the cantilever as the nonnegative number axis of length k with bracket in point 0 by the schema: A245212(k) = (k * tau(k)) - Sum_{(d<k) | k} (d * tau(d)).

%C Numbers k such that A038040(k) = k * tau(k) < A245211(k) = Sum_{(d<k) | k} (d * tau(d)).

%C From _Amiram Eldar_, Jul 19 2024: (Start)

%C Numbers whose divisors have a mean abundancy index that is larger than 2.

%C The numbers of terms that do not exceed 10^k, for k = 3, 4, ..., are 24, 243, 2571, 25583, 254794, 2551559, 25514104, 255112225, ... . Apparently, the asymptotic density of this sequence exists and equals 0.02551... .

%C The least odd term in this sequence is a(276918705) = 10854718875. (End)

%H Jens Kruse Andersen, <a href="/A245214/b245214.txt">Table of n, a(n) for n = 1..10000</a>

%e Number 144 is in sequence because 144 * tau(144) = 2160 < Sum_{(d<144) | 144} (d * tau(d)) = 2226.

%t f[p_, e_] := ((e+1)*p^2 - (e+2)*p + p^(-e))/((e+1)*(p-1)^2); s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[2500], s[#] > 2 &] (* _Amiram Eldar_, Jul 19 2024 *)

%o (Magma) [n: n in [1..100000] | (2*(n*(#[d: d in Divisors(n)]))-(&+[d*#([e: e in Divisors(d)]): d in Divisors(n)])) lt 0]

%o (PARI) isok(n) = (n*numdiv(n) - sumdiv(n, d, (d<n)*d*numdiv(d))) < 0; \\ _Michel Marcus_, Aug 06 2014

%o (PARI) is(n) = {my(f = factor(n)); prod(i = 1, #f~, p=f[i,1]; e=f[i,2]; (-2*p - e*p + p^2 + e*p^2 + p^(-e))/((e + 1)*(p - 1)^2)) > 2;} \\ _Amiram Eldar_, Jul 19 2024

%Y Cf. A000005, A038040, A245211, A245212, A245213.

%K nonn

%O 1,1

%A _Jaroslav Krizek_, Jul 23 2014