login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245199
Numbers n where phi(n) and tau(n) are perfect squares.
1
1, 8, 10, 34, 57, 74, 85, 125, 185, 202, 219, 394, 451, 456, 489, 505, 514, 546, 570, 629, 640, 679, 680, 802, 985, 1000, 1026, 1057, 1154, 1285, 1354, 1365, 1387, 1417, 1480, 1717, 1752, 1938, 2005, 2016, 2047, 2176, 2190, 2340, 2457, 2509, 2565, 2594, 2649
OFFSET
1,2
COMMENTS
Numbers n such that A000005(n) and A000010(n) are perfect squares.
Intersection of A036436 and A039770. - Michel Marcus, Jul 15 2014
LINKS
EXAMPLE
8 is in the sequence because phi(8) = 4, tau(8) = 4, and 4 is a perfect square.
12 is not in the sequence because tau(12) = 6 is not a square.
MAPLE
filter:= proc(n) uses numtheory; issqr(phi(n)) and issqr(tau(n)) end proc:
select(filter, [$1..1000]); # Robert Israel, Jul 27 2014
MATHEMATICA
fQ[n_] := IntegerQ@ Sqrt@ EulerPhi[n] && IntegerQ@ Sqrt@ DivisorSigma[0, n]; Select[ Range@ 3000, fQ] (* Robert G. Wilson v, Jul 21 2014 *)
Select[Range[3000], AllTrue[{Sqrt[EulerPhi[#]], Sqrt[DivisorSigma[0, #]]}, IntegerQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 01 2018 *)
PROG
(PARI) isok(n) = issquare(numdiv(n)) && issquare(eulerphi(n)); \\ Michel Marcus, Jul 15 2014
(Python)
from sympy import totient, divisor_count
from gmpy2 import is_square
[n for n in range(1, 10**4) if is_square(int(divisor_count(n))) and is_square(int(totient(n)))] # Chai Wah Wu, Aug 04 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Muehlfeld, Jul 13 2014
STATUS
approved