login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245187
Trajectory of 1 under repeated applications of the morphism 0->12, 1->12, 2->00.
1
1, 2, 0, 0, 1, 2, 1, 2, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 1, 2, 1, 2, 0, 0, 1, 2, 1, 2, 1, 2, 0, 0, 1, 2, 1, 2, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 1, 2, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 1, 2, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 1, 2, 1, 2, 0, 0, 1, 2, 1, 2, 1, 2, 0, 0, 1, 2, 1, 2, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 1, 2
OFFSET
0,2
COMMENTS
This is the 2-block coding of the period-doubling word A096268.
LINKS
A. Parreau, M. Rigo, E. Rowland, E. Vandomme, A new approach to the 2-regularity of the l-abelian complexity of 2-automatic sequences, arXiv:1405.3532 [cs.FL], 2014-2015. See Example 16.
A. Parreau, M. Rigo, E. Rowland, E. Vandomme, A new approach to the 2-regularity of the l-abelian complexity of 2-automatic sequences, The Electronic Journal of Combinatorics, Volume 22, Issue 1 (2015), Paper #P1.27. See Example 16.
MATHEMATICA
(* This gives the first 128 terms. *)
SubstitutionSystem[{0 -> {1, 2}, 1 -> {1, 2}, 2 -> {0, 0}}, {1}, {{7}}] (* Eric Rowland, Oct 02 2016 *)
CROSSREFS
See A091952 for a very similar sequence. Cf. A096268.
Sequence in context: A376081 A049321 A204425 * A292598 A079113 A144874
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 21 2014
EXTENSIONS
More terms from Eric Rowland, Oct 02 2016
STATUS
approved