login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245185
Triangle read by rows: T(n,k) = number of pseudo-square parallelogram (psp) polyominoes with semiperimeter n+1 and k columns.
3
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 5, 2, 1, 1, 3, 7, 7, 3, 1, 1, 3, 11, 15, 11, 3, 1, 1, 4, 15, 25, 25, 15, 4, 1, 1, 4, 20, 41, 52, 41, 20, 4, 1, 1, 5, 25, 62, 92, 92, 62, 25, 5, 1, 1, 5, 32, 89, 159, 179, 159, 89, 32, 5, 1, 1, 6, 38, 122, 249, 342, 342, 249, 122, 38, 6, 1
OFFSET
1,8
LINKS
Srecko Brlek, Andrea Frosini, Simone Rinaldi, Laurent Vuillon, Tilings by translation: enumeration by a rational language approach, The Electronic Journal of Combinatorics, vol. 13, (2006). See Table 2.
EXAMPLE
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 2, 2, 1;
1, 2, 5, 2, 1;
1, 3, 7, 7, 3, 1;
1, 3, 11, 15, 11, 3, 1;
1, 4, 15, 25, 25, 15, 4, 1;
1, 4, 20, 41, 52, 41, 20, 4, 1;
...
PROG
(PARI)
IsPos(v)={for(i=1, #v, if(v[i]<=0, return(0))); 1}
E(b)={my(v=vector(hammingweight(b)-1), h=0, k=0); if(bittest(b, 0), b>>=1); while(k<#v, if(bittest(b, 0), k++; v[k]=h, h++); b>>=1); v}
Row(n)={my(v=vector(n)); forstep(b=2^n, 2*2^n, 2, my(r=E(b), d=b); for(k=1, n, d=bitor(d>>1, bitand(d, 1)<<n); if(bittest(d, 0) && !bittest(d, n), v[1+#r]+=IsPos(r-E(d))))); v}
{ for(n=1, 10, print(Row(n))) } \\ Andrew Howroyd, Mar 01 2020
CROSSREFS
Row sums are A244521(n+1).
Sequence in context: A104156 A070166 A131373 * A034853 A242093 A350910
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jul 20 2014
EXTENSIONS
Name clarified and terms a(46) and beyond from Andrew Howroyd, Mar 01 2020
STATUS
approved