login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245050
Number of hybrid 7-ary trees with n internal nodes.
2
1, 2, 27, 521, 11764, 290305, 7585749, 206294771, 5778015219, 165541098701, 4828687088591, 142916854642246, 4281359716909135, 129567073833995237, 3955263087052174005, 121649279851846182073, 3766009580469162813492, 117260083892211493754415
OFFSET
0,2
LINKS
SeoungJi Hong and SeungKyung Park, Hybrid d-ary trees and their generalization, Bull. Korean Math. Soc. 51 (2014), No. 1, pp. 229-235
FORMULA
a(n) = 1/(6*n+1) * Sum_{i=0..n} C(6*n+i,i)*C(6*n+i+1,n-i).
a(n) = [x^n] ((1+x)/(1-x-x^2))^(6*n+1) / (6*n+1).
G.f. satisfies: A(x) = (1+x*A(x)^6) * (1+x*A(x)^7).
MAPLE
a:= n-> add(binomial(6*n+i, i)*binomial(6*n+i+1, n-i), i=0..n)/(6*n+1):
seq(a(n), n=0..20);
CROSSREFS
Column k=7 of A245049.
Sequence in context: A363961 A240701 A240638 * A242009 A121137 A203429
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 10 2014
STATUS
approved