OFFSET
0,3
COMMENTS
In general, if g.f. satisfies: A(x) = 1 - x + A(x)^3 - A(x*A(x)^q), q>=3, then a(n) ~ c(q) * q^n * n^(n - 3/q + (1/2-7/(2*q))*log(2)) / (exp(n) * (log(2))^n), where c(q) is a constant independent on n.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..330
FORMULA
a(n) ~ c * 5^n * n^(n - 3/5 - 1/5*log(2)) / (exp(n) * (log(2))^n), where c = 0.1494101265204548503053...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A = 2*A - (1-x + A^3 - subst(A, x, x*A^5 +x*O(x^n))) ); polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 11 2014
EXTENSIONS
Name corrected by Vaclav Kotesovec and Paul D. Hanna, Aug 15 2014
STATUS
approved